ترغب بنشر مسار تعليمي؟ اضغط هنا

ABCD: A Graph Framework to Convert Complex Sentences to a Covering Set of Simple Sentences

100   0   0.0 ( 0 )
 نشر من قبل Yanjun Gao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomic clauses are fundamental text units for understanding complex sentences. Identifying the atomic sentences within complex sentences is important for applications such as summarization, argument mining, discourse analysis, discourse parsing, and question answering. Previous work mainly relies on rule-based methods dependent on parsing. We propose a new task to decompose each complex sentence into simple sentences derived from the tensed clauses in the source, and a novel problem formulation as a graph edit task. Our neural model learns to Accept, Break, Copy or Drop elements of a graph that combines word adjacency and grammatical dependencies. The full processing pipeline includes modules for graph construction, graph editing, and sentence generation from the output graph. We introduce DeSSE, a new dataset designed to train and evaluate complex sentence decomposition, and MinWiki, a subset of MinWikiSplit. ABCD achieves comparable performance as two parsing baselines on MinWiki. On DeSSE, which has a more even balance of complex sentence types, our model achieves higher accuracy on the number of atomic sentences than an encoder-decoder baseline. Results include a detailed error analysis.



قيم البحث

اقرأ أيضاً

Probabilistic topic models are generative models that describe the content of documents by discovering the latent topics underlying them. However, the structure of the textual input, and for instance the grouping of words in coherent text spans such as sentences, contains much information which is generally lost with these models. In this paper, we propose sentenceLDA, an extension of LDA whose goal is to overcome this limitation by incorporating the structure of the text in the generative and inference processes. We illustrate the advantages of sentenceLDA by comparing it with LDA using both intrinsic (perplexity) and extrinsic (text classification) evaluation tasks on different text collections.
Identifying mathematical relations expressed in text is essential to understanding a broad range of natural language text from election reports, to financial news, to sport commentaries to mathematical word problems. This paper focuses on identifying and understanding mathematical relations described within a single sentence. We introduce the problem of Equation Parsing -- given a sentence, identify noun phrases which represent variables, and generate the mathematical equation expressing the relation described in the sentence. We introduce the notion of projective equation parsing and provide an efficient algorithm to parse text to projective equations. Our system makes use of a high precision lexicon of mathematical expressions and a pipeline of structured predictors, and generates correct equations in $70%$ of the cases. In $60%$ of the time, it also identifies the correct noun phrase $rightarrow$ variables mapping, significantly outperforming baselines. We also release a new annotated dataset for task evaluation.
Models for question answering, dialogue agents, and summarization often interpret the meaning of a sentence in a rich context and use that meaning in a new context. Taking excerpts of text can be problematic, as key pieces may not be explicit in a lo cal window. We isolate and define the problem of sentence decontextualization: taking a sentence together with its context and rewriting it to be interpretable out of context, while preserving its meaning. We describe an annotation procedure, collect data on the Wikipedia corpus, and use the data to train models to automatically decontextualize sentences. We present preliminary studies that show the value of sentence decontextualization in a user facing task, and as preprocessing for systems that perform document understanding. We argue that decontextualization is an important subtask in many downstream applications, and that the definitions and resources provided can benefit tasks that operate on sentences that occur in a richer context.
User acceptance of artificial intelligence agents might depend on their ability to explain their reasoning, which requires adding an interpretability layer that fa- cilitates users to understand their behavior. This paper focuses on adding an in- ter pretable layer on top of Semantic Textual Similarity (STS), which measures the degree of semantic equivalence between two sentences. The interpretability layer is formalized as the alignment between pairs of segments across the two sentences, where the relation between the segments is labeled with a relation type and a similarity score. We present a publicly available dataset of sentence pairs annotated following the formalization. We then develop a system trained on this dataset which, given a sentence pair, explains what is similar and different, in the form of graded and typed segment alignments. When evaluated on the dataset, the system performs better than an informed baseline, showing that the dataset and task are well-defined and feasible. Most importantly, two user studies show how the system output can be used to automatically produce explanations in natural language. Users performed better when having access to the explanations, pro- viding preliminary evidence that our dataset and method to automatically produce explanations is useful in real applications.
We present a hierarchical convolutional document model with an architecture designed to support introspection of the document structure. Using this model, we show how to use visualisation techniques from the computer vision literature to identify and extract topic-relevant sentences. We also introduce a new scalable evaluation technique for automatic sentence extraction systems that avoids the need for time consuming human annotation of validation data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا