ﻻ يوجد ملخص باللغة العربية
Multiple organ failure (MOF) is a severe syndrome with a high mortality rate among Intensive Care Unit (ICU) patients. Early and precise detection is critical for clinicians to make timely decisions. An essential challenge in applying machine learning models to electronic health records (EHRs) is the pervasiveness of missing values. Most existing imputation methods are involved in the data preprocessing phase, failing to capture the relationship between data and outcome for downstream predictions. In this paper, we propose classifier-guided generative adversarial imputation networks Classifier-GAIN) for MOF prediction to bridge this gap, by incorporating both observed data and label information. Specifically, the classifier takes imputed values from the generator(imputer) to predict task outcomes and provides additional supervision signals to the generator by joint training. The classifier-guide generator imputes missing values with label-awareness during training, improving the classifiers performance during inference. We conduct extensive experiments showing that our approach consistently outperforms classical and state-of-art neural baselines across a range of missing data scenarios and evaluation metrics.
Electronic Health Records often suffer from missing data, which poses a major problem in clinical practice and clinical studies. A novel approach for dealing with missing data are Generative Adversarial Nets (GANs), which have been generating huge re
Missing value imputation is a challenging and well-researched topic in data mining. In this paper, we propose IFGAN, a missing value imputation algorithm based on Feature-specific Generative Adversarial Networks (GAN). Our idea is intuitive yet effec
Generative adversarial networks (GANs) have achieved remarkable progress in recent years, but the continuously growing scale of models makes them challenging to deploy widely in practical applications. In particular, for real-time generation tasks, d
We propose a generative adversarial network with multiple discriminators, where each discriminator is specialized to distinguish the subset of a real dataset. This approach facilitates learning a generator coinciding with the underlying data distribu
Conditional generative adversarial networks (cGAN) have led to large improvements in the task of conditional image generation, which lies at the heart of computer vision. The major focus so far has been on performance improvement, while there has bee