ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple Organ Failure Prediction with Classifier-Guided Generative Adversarial Imputation Networks

78   0   0.0 ( 0 )
 نشر من قبل Xinlu Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple organ failure (MOF) is a severe syndrome with a high mortality rate among Intensive Care Unit (ICU) patients. Early and precise detection is critical for clinicians to make timely decisions. An essential challenge in applying machine learning models to electronic health records (EHRs) is the pervasiveness of missing values. Most existing imputation methods are involved in the data preprocessing phase, failing to capture the relationship between data and outcome for downstream predictions. In this paper, we propose classifier-guided generative adversarial imputation networks Classifier-GAIN) for MOF prediction to bridge this gap, by incorporating both observed data and label information. Specifically, the classifier takes imputed values from the generator(imputer) to predict task outcomes and provides additional supervision signals to the generator by joint training. The classifier-guide generator imputes missing values with label-awareness during training, improving the classifiers performance during inference. We conduct extensive experiments showing that our approach consistently outperforms classical and state-of-art neural baselines across a range of missing data scenarios and evaluation metrics.

قيم البحث

اقرأ أيضاً

Electronic Health Records often suffer from missing data, which poses a major problem in clinical practice and clinical studies. A novel approach for dealing with missing data are Generative Adversarial Nets (GANs), which have been generating huge re search interest in image generation and transformation. Recently, researchers have attempted to apply GANs to missing data generation and imputation for EHR data: a major challenge here is the categorical nature of the data. State-of-the-art solutions to the GAN-based generation of categorical data involve either reinforcement learning, or learning a bidirectional mapping between the categorical and the real latent feature space, so that the GANs only need to generate real-valued features. However, these methods are designed to generate complete feature vectors instead of imputing only the subsets of missing features. In this paper we propose a simple and yet effective approach that is based on previous work on GANs for data imputation. We first motivate our solution by discussing the reason why adversarial training often fails in case of categorical features. Then we derive a novel way to re-code the categorical features to stabilize the adversarial training. Based on experiments on two real-world EHR data with multiple settings, we show that our imputation approach largely improves the prediction accuracy, compared to more traditional data imputation approaches.
Missing value imputation is a challenging and well-researched topic in data mining. In this paper, we propose IFGAN, a missing value imputation algorithm based on Feature-specific Generative Adversarial Networks (GAN). Our idea is intuitive yet effec tive: a feature-specific generator is trained to impute missing values, while a discriminator is expected to distinguish the imputed values from observed ones. The proposed architecture is capable of handling different data types, data distributions, missing mechanisms, and missing rates. It also improves post-imputation analysis by preserving inter-feature correlations. We empirically show on several real-life datasets that IFGAN outperforms current state-of-the-art algorithm under various missing conditions.
Generative adversarial networks (GANs) have achieved remarkable progress in recent years, but the continuously growing scale of models makes them challenging to deploy widely in practical applications. In particular, for real-time generation tasks, d ifferent devices require generators of different sizes due to varying computing power. In this paper, we introduce slimmable GANs (SlimGANs), which can flexibly switch the width of the generator to accommodate various quality-efficiency trade-offs at runtime. Specifically, we leverage multiple discriminators that share partial parameters to train the slimmable generator. To facilitate the textit{consistency} between generators of different widths, we present a stepwise inplace distillation technique that encourages narrow generators to learn from wide ones. As for class-conditional generation, we propose a sliceable conditional batch normalization that incorporates the label information into different widths. Our methods are validated, both quantitatively and qualitatively, by extensive experiments and a detailed ablation study.
We propose a generative adversarial network with multiple discriminators, where each discriminator is specialized to distinguish the subset of a real dataset. This approach facilitates learning a generator coinciding with the underlying data distribu tion and thus mitigates the chronic mode collapse problem. From the inspiration of multiple choice learning, we guide each discriminator to have expertise in the subset of the entire data and allow the generator to find reasonable correspondences between the latent and real data spaces automatically without supervision for training examples and the number of discriminators. Despite the use of multiple discriminators, the backbone networks are shared across the discriminators and the increase of training cost is minimized. We demonstrate the effectiveness of our algorithm in the standard datasets using multiple evaluation metrics.
Conditional generative adversarial networks (cGAN) have led to large improvements in the task of conditional image generation, which lies at the heart of computer vision. The major focus so far has been on performance improvement, while there has bee n little effort in making cGAN more robust to noise. The regression (of the generator) might lead to arbitrarily large errors in the output, which makes cGAN unreliable for real-world applications. In this work, we introduce a novel conditional GAN model, called RoCGAN, which leverages structure in the target space of the model to address the issue. Our model augments the generator with an unsupervised pathway, which promotes the outputs of the generator to span the target manifold even in the presence of intense noise. We prove that RoCGAN share similar theoretical properties as GAN and experimentally verify that our model outperforms existing state-of-the-art cGAN architectures by a large margin in a variety of domains including images from natural scenes and faces.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا