ترغب بنشر مسار تعليمي؟ اضغط هنا

Credal Self-Supervised Learning

176   0   0.0 ( 0 )
 نشر من قبل Julian Lienen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-training is an effective approach to semi-supervised learning. The key idea is to let the learner itself iteratively generate pseudo-supervision for unlabeled instances based on its current hypothesis. In combination with consistency regularization, pseudo-labeling has shown promising performance in various domains, for example in computer vision. To account for the hypothetical nature of the pseudo-labels, these are commonly provided in the form of probability distributions. Still, one may argue that even a probability distribution represents an excessive level of informedness, as it suggests that the learner precisely knows the ground-truth conditional probabilities. In our approach, we therefore allow the learner to label instances in the form of credal sets, that is, sets of (candidate) probability distributions. Thanks to this increased expressiveness, the learner is able to represent uncertainty and a lack of knowledge in a more flexible and more faithful manner. To learn from weakly labeled data of that kind, we leverage methods that have recently been proposed in the realm of so-called superset learning. In an exhaustive empirical evaluation, we compare our methodology to state-of-the-art self-supervision approaches, showing competitive to superior performance especially in low-label scenarios incorporating a high degree of uncertainty.



قيم البحث

اقرأ أيضاً

We approach self-supervised learning of image representations from a statistical dependence perspective, proposing Self-Supervised Learning with the Hilbert-Schmidt Independence Criterion (SSL-HSIC). SSL-HSIC maximizes dependence between representations of transform
Self-supervised representation learning has shown remarkable success in a number of domains. A common practice is to perform data augmentation via hand-crafted transformations intended to leave the semantics of the data invariant. We seek to understa nd the empirical success of this approach from a theoretical perspective. We formulate the augmentation process as a latent variable model by postulating a partition of the latent representation into a content component, which is assumed invariant to augmentation, and a style component, which is allowed to change. Unlike prior work on disentanglement and independent component analysis, we allow for both nontrivial statistical and causal dependencies in the latent space. We study the identifiability of the latent representation based on pairs of views of the observations and prove sufficient conditions that allow us to identify the invariant content partition up to an invertible mapping in both generative and discriminative settings. We find numerical simulations with dependent latent variables are consistent with our theory. Lastly, we introduce Causal3DIdent, a dataset of high-dimensional, visually complex images with rich causal dependencies, which we use to study the effect of data augmentations performed in practice.
Self-supervised learning (SSL) of energy based models has an intuitive relation to equilibrium thermodynamics because the softmax layer, mapping energies to probabilities, is a Gibbs distribution. However, in what way SSL is a thermodynamic process? We show that some SSL paradigms behave as a thermodynamic composite system formed by representations and self-labels in contact with a nonequilibrium reservoir. Moreover, this system is subjected to usual thermodynamic cycles, such as adiabatic expansion and isochoric heating, resulting in a generalized Gibbs ensemble (GGE). In this picture, we show that learning is seen as a demon that operates in cycles using feedback measurements to extract negative work from the system. As applications, we examine some SSL algorithms using this idea.
Propagating input uncertainty through non-linear Gaussian process (GP) mappings is intractable. This hinders the task of training GPs using uncertain and partially observed inputs. In this paper we refer to this task as semi-described learning. We th en introduce a GP framework that solves both, the semi-described and the semi-supervised learning problems (where missing values occur in the outputs). Auto-regressive state space simulation is also recognised as a special case of semi-described learning. To achieve our goal we develop variational methods for handling semi-described inputs in GPs, and couple them with algorithms that allow for imputing the missing values while treating the uncertainty in a principled, Bayesian manner. Extensive experiments on simulated and real-world data study the problems of iterative forecasting and regression/classification with missing values. The results suggest that the principled propagation of uncertainty stemming from our framework can significantly improve performance in these tasks.
Self-supervised learning (especially contrastive learning) has attracted great interest due to its tremendous potentials in learning discriminative representations in an unsupervised manner. Despite the acknowledged successes, existing contrastive le arning methods suffer from very low learning efficiency, e.g., taking about ten times more training epochs than supervised learning for comparable recognition accuracy. In this paper, we discover two contradictory phenomena in contrastive learning that we call under-clustering and over-clustering problems, which are major obstacles to learning efficiency. Under-clustering means that the model cannot efficiently learn to discover the dissimilarity between inter-class samples when the negative sample pairs for contrastive learning are insufficient to differentiate all the actual object categories. Over-clustering implies that the model cannot efficiently learn the feature representation from excessive negative sample pairs, which enforces the model to over-cluster samples of the same actual categories into different clusters. To simultaneously overcome these two problems, we propose a novel self-supervised learning framework using a median triplet loss. Precisely, we employ a triplet loss tending to maximize the relative distance between the positive pair and negative pairs to address the under-clustering problem; and we construct the negative pair by selecting the negative sample of a median similarity score from all negative samples to avoid the over-clustering problem, guaranteed by the Bernoulli Distribution model. We extensively evaluate our proposed framework in several large-scale benchmarks (e.g., ImageNet, SYSU-30k, and COCO). The results demonstrate the superior performance (e.g., the learning efficiency) of our model over the latest state-of-the-art methods by a clear margin. Codes available at: https://github.com/wanggrun/triplet.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا