ﻻ يوجد ملخص باللغة العربية
The emergence of the mobility edge (ME) has been recognized as an important characteristic of Anderson localization. The difficulty in understanding the physics of the MEs in three-dimensional (3D) systems from a microscopic picture promotes discovering of models with the exact MEs in lower-dimensional systems. While most of previous studies concern on the one-dimensional (1D) quasiperiodic systems, the analytic results that allow for an accurate understanding of two-dimensional (2D) cases are rare. In this Letter, we disclose an exactly solvable 2D quasicrystal model with parity-time ($mathcal{PT}$) symmetry displaying exact MEs. In the thermodynamic limit, we unveil that the extended-localized transition point, observed at the $mathcal{PT}$ symmetry breaking point, is of topological nature characterized by a hidden winding number defined in the dual space. The 2D non-Hermitian quasicrystal model can be realized in the coupling waveguide platform, and the localization features can be detected by the excitation dynamics.
We propose a general analytic method to study the localization transition in one-dimensional quasicrystals with parity-time ($mathcal{PT}$) symmetry, described by complex quasiperiodic mosaic lattice models. By applying Avilas global theory of quasip
We investigate localization-delocalization transition in one-dimensional non-Hermitian quasiperiodic lattices with exponential short-range hopping, which possess parity-time ($mathcal{PT}$) symmetry. The localization transition induced by the non-Her
Quantum localization in 1D non-Hermitian systems, especially the search for exact single-particle mobility edges, has attracted considerable interest recently. While much progress has been made, the available methods to determine the ME of such model
Time-periodic driving fields could endow a system with peculiar topological and transport features. In this work, we find dynamically controlled localization transitions and mobility edges in non-Hermitian quasicrystals via shaking the lattice period
In this paper, a one-dimensional non-Hermitian quasiperiodic $p$-wave superconductor without $mathcal{PT}$-symmetry is studied. By analyzing the spectrum, we discovered there still exists real-complex energy transition even if the inexistence of $mat