ﻻ يوجد ملخص باللغة العربية
Measuring the positions of optical vortices is an essential part in the researches of speckles and adaptive optics. The measurement accuracy is restricted by the performance of optical devices and the properties of optical vortices, such as density and size. In order to achieve high accuracy and wide range of application, the dual shearing-type Sagnac interferometers is proposed using two shearing plates to adjust the precision of optical vortices measurement. The shearing displacements are able to balance the measuring precision and the value of the intensity ratio point to provide optimum measurement performance. This method is useful for the observation of optical vortices with different sizes and densities, especially for the high density condition.
The orbital angular momentum (OAM) of light has recently attracted a growing interest as a new degree of freedom in order to increase the information capacity of today optical networks both for free-space and optical fiber transmission. Here we prese
Sensitive and accurate rotation sensing is a critical requirement for applications such as inertial navigation [1], north-finding [2], geophysical analysis [3], and tests of general relativity [4]. One effective technique used for rotation sensing is
Singular light beams with optical vortices (OV) are often generated by means of thin binary gratings with groove bifurcation (fork holograms) that produce a set of diffracted beams with different OV charges. Usually, only single separate beams are us
A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enha
Vortex, the winding of a vector field in two dimensions, has its core the field singularity and its topological charge defined by the quantized winding angle of the vector field. Vortices are one of the most fundamental topological excitations in nat