ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisions of micron-sized, charged water droplets in still air

82   0   0.0 ( 0 )
 نشر من قبل Bernhard Mehlig
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of electrical charge on collisions of hydrodynamically interacting, micron-sized water droplets settling through quiescent air. The relative dynamics of charged droplets is determined by hydrodynamic interactions, particle and fluid inertia, and electrostatic forces. We analyse the resulting relative dynamics of oppositely charged droplets by determining its fixed points and their stable and unstable manifolds. The stable manifold of a saddle point forms a separatrix that separates colliding trajectories from those that do not collide. The qualitative conclusions from this theory are in excellent agreement with experiments.



قيم البحث

اقرأ أيضاً

Active droplets swim as a result of the nonlinear advective coupling of the distribution of chemical species they consume or release with the Marangoni flows created by their non-uniform surface distribution. Most existing models focus on the self-pr opulsion of a single droplet in an unbounded fluid, which arises when diffusion is slow enough (i.e. beyond a critical Peclet number, $mbox{Pe}_c$). Despite its experimental relevance, the coupled dynamics of multiple droplets and/or collision with a wall remains mostly unexplored. Using a novel approach based on a moving fitted bispherical grid, the fully-coupled nonlinear dynamics of the chemical solute and flow fields are solved here to characterise in detail the axisymmetric collision of an active droplet with a rigid wall (or with a second droplet). The dynamics is strikingly different depending on the convective-to-diffusive transport ratio, $mbox{Pe}$: near the self-propulsion threshold (moderate $mbox{Pe}$), the rebound dynamics are set by chemical interactions and are well captured by asymptotic analysis; in contrast, for larger $mbox{Pe}$, a complex and nonlinear combination of hydrodynamic and chemical effects set the detailed dynamics, including a closer approach to the wall and a velocity plateau shortly after the rebound of the droplet. The rebound characteristics, i.e. minimum distance and duration, are finally fully characterised in terms of $mbox{Pe}$.
Chemically-active droplets exhibit complex avoiding trajectories. While heterogeneity is inevitable in active matter experiments, it is mostly overlooked in their modelling. Exploiting its geometric simplicity, we fully-resolve the head-on collision of two swimming droplets of different radii and demonstrate that even a small contrast in size critically conditions their collision and subsequent dynamics. We identify three fundamentally-different regimes. The resulting high sensitivity of pairwise collisions is expected to profoundly affect their collective dynamics.
Microfluidic techniques have been extensively developed to realize micro-total analysis systems in a small chip. For microanalysis, electro-magnetic forces have generally been utilized for the trapping of objects, but hydrodynamics has been little ex plored despite its relevance to pattern formation. Here, we report that water-in-oil (W/O) droplets can be transported in the grid of an array of other large W/O droplets. As each droplet approaches an interspace of the large droplet array, while exhibiting persistent back-and-forth motion, it is conveyed at a velocity equal to the droplet array. We confirm the appearance of closed streamlines in a numerical simulation, suggesting that a vortex-like stream is involved in trapping the droplet. Furthermore, more than one droplet is also conveyed as an ordered cluster with dynamic reposition.
When a dense granular jet hits a target, it forms a large dead zone and ejects a highly collimated conical sheet with a well-defined opening angle. Using experiments, simulations, and continuum modeling, we find that this opening angle is insensitive to the precise target shape and the dissipation mechanisms in the flow. We show that this surprising insensitivity arises because dense granular jet impact, though highly dissipative, is nonetheless controlled by the limit of perfect fluid flow.
Under continuous laser irradiation, noble metal nanoparticles immersed in water can quickly heat up, leading to the nucleation of so-called plasmonic bubbles. In this work, we want to further understand the bubble nucleation and growth mechanism. In particular, we quantitatively study the effect of the amount of dissolved air on the bubble nucleation and growth dynamics, both for the initial giant bubble, which forms shortly after switching on the laser and is mainly composed of vapor, and for the final life phase of the bubble, during which it mainly contains air expelled from water. We found that the bubble nucleation temperature depends on the gas concentration: the higher the gas concentration, the lower the bubble nucleation temperature. Also, the long-term diffusiondominated bubble growth is governed by the gas concentration. The radius of the bubbles grows as R(t)~t^1/3 for airequilibrated and air-oversaturated water. In contrast, in partially degassed water, the growth is much slower since, even for the highest temperature we achieve, the water remains undersaturated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا