ﻻ يوجد ملخص باللغة العربية
Chemically-active droplets exhibit complex avoiding trajectories. While heterogeneity is inevitable in active matter experiments, it is mostly overlooked in their modelling. Exploiting its geometric simplicity, we fully-resolve the head-on collision of two swimming droplets of different radii and demonstrate that even a small contrast in size critically conditions their collision and subsequent dynamics. We identify three fundamentally-different regimes. The resulting high sensitivity of pairwise collisions is expected to profoundly affect their collective dynamics.
Active droplets swim as a result of the nonlinear advective coupling of the distribution of chemical species they consume or release with the Marangoni flows created by their non-uniform surface distribution. Most existing models focus on the self-pr
Active droplets emit a chemical solute at their surface that modifies their local interfacial tension. They exploit the nonlinear coupling of the convective transport of solute to the resulting Marangoni flows to self-propel. Such swimming droplets a
We consider self-propelled droplets which are driven by internal flow. Tracer particles, which are advected by the flow, in general follow chaotic trajectories, even though the motion of the autonomous swimmer is completely regular. The flow is mixin
The present article experimentally and theoretically probes the evaporation kinetics of sessile saline droplets. Observations reveal that presence of solvated ions leads to modulated evaporation kinetics, which is further a function of surface wettab
The off-center collision of binary bouncing droplets of equal size was studied numerically by a volume-of-fluid (VOF) method with two marker functions, which has been validated by comparing with available experimental results. A non-monotonic kinetic