ترغب بنشر مسار تعليمي؟ اضغط هنا

Total Least Squares for Optimal Pose Estimation

63   0   0.0 ( 0 )
 نشر من قبل Saeed Maleki
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work provides a theoretical framework for the pose estimation problem using total least squares for vector observations from landmark features. First, the optimization framework is formulated for the pose estimation problem with observation vectors extracted from point cloud features. Then, error-covariance expressions are derived. The attitude and position solutions obtained via the derived optimization framework are proven to reach the bounds defined by the Cramer-Rao lower bound under the small angle approximation of attitude errors. The measurement data for the simulation of this problem is provided through a series of vector observation scans, and a fully populated observation noise-covariance matrix is assumed as the weight in the cost function to cover for the most general case of the sensor uncertainty. Here, previous derivations are expanded for the pose estimation problem to include more generic cases of correlations in the errors than previously cases involving an isotropic noise assumption. The proposed solution is simulated in a Monte-Carlo framework with 10,000 samples to validate the error-covariance analysis.



قيم البحث

اقرأ أيضاً

87 - Ben Boukai , Yue Zhang 2018
We consider a resampling scheme for parameters estimates in nonlinear regression models. We provide an estimation procedure which recycles, via random weighting, the relevant parameters estimates to construct consistent estimates of the sampling dist ribution of the various estimates. We establish the asymptotic normality of the resampled estimates and demonstrate the applicability of the recycling approach in a small simulation study and via example.
The total least squares problem with the general Tikhonov regularization can be reformulated as a one-dimensional parametric minimization problem (PM), where each parameterized function evaluation corresponds to solving an n-dimensional trust region subproblem. Under a mild assumption, the parametric function is differentiable and then an efficient bisection method has been proposed for solving (PM) in literature. In the first part of this paper, we show that the bisection algorithm can be greatly improved by reducing the initially estimated interval covering the optimal parameter. It is observed that the bisection method cannot guarantee to find the globally optimal solution since the nonconvex (PM) could have a local non-global minimizer. The main contribution of this paper is to propose an efficient branch-and-bound algorithm for globally solving (PM), based on a novel underestimation of the parametric function over any given interval using only the information of the parametric function evaluations at the two endpoints. We can show that the new algorithm(BTD Algorithm) returns a global epsilon-approximation solution in a computational effort of at most O(n^3/epsilon) under the same assumption as in the bisection method. The numerical results demonstrate that our new global optimization algorithm performs even much faster than the improved version of the bisection heuristic algorithm.
In this paper we describe active set type algorithms for minimization of a smooth function under general order constraints, an important case being functions on the set of bimonotone r-by-s matrices. These algorithms can be used, for instance, to est imate a bimonotone regression function via least squares or (a smooth approximation of) least absolute deviations. Another application is shrinkage estimation in image denoising or, more generally, regression problems with two ordinal factors after representing the data in a suitable basis which is indexed by pairs (i,j) in {1,...,r}x{1,...,s}. Various numerical examples illustrate our methods.
143 - Marc Baboulin 2010
We derive closed formulas for the condition number of a linear function of the total least squares solution. Given an over determined linear system Ax=b, we show that this condition number can be computed using the singular values and the right singu lar vectors of [A,b] and A. We also provide an upper bound that requires the computation of the largest and the smallest singular value of [A,b] and the smallest singular value of A. In numerical examples, we compare these values and the resulting forward error bounds with existing error estimates.
In this work, we propose a novel sampling method for Design of Experiments. This method allows to sample such input values of the parameters of a computational model for which the constructed surrogate model will have the least possible approximation error. High efficiency of the proposed method is demonstrated by its comparison with other sampling techniques (LHS, Sobol sequence sampling, and Maxvol sampling) on the problem of least-squares polynomial approximation. Also, numerical experiments for the Lebesgue constant growth for the points sampled by the proposed method are carried out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا