ترغب بنشر مسار تعليمي؟ اضغط هنا

A contribution to the conditioning of the total least squares problem

144   0   0.0 ( 0 )
 نشر من قبل Marc Baboulin
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Marc Baboulin




اسأل ChatGPT حول البحث

We derive closed formulas for the condition number of a linear function of the total least squares solution. Given an over determined linear system Ax=b, we show that this condition number can be computed using the singular values and the right singular vectors of [A,b] and A. We also provide an upper bound that requires the computation of the largest and the smallest singular value of [A,b] and the smallest singular value of A. In numerical examples, we compare these values and the resulting forward error bounds with existing error estimates.



قيم البحث

اقرأ أيضاً

This paper is devoted to condition numbers of the multidimensional total least squares problem with linear equality constraint (TLSE). Based on the perturbation theory of invariant subspace, the TLSE problem is proved to be equivalent to a multidimen sional unconstrained weighed total least squares problem in the limit sense. With a limit technique, Kronecker-product-based formulae for normwise, mixed and componentwise condition numbers of the minimum Frobenius norm TLSE solution are given. Compact upper bounds of these condition numbers are provided to reduce the storage and computation cost. All expressions and upper bounds of these condition numbers unify the ones for the single-dimensional TLSE problem and multidimensional total least squares problem. Some numerical experiments are performed to illustrate our results.
In this paper, we address the accuracy of the results for the overdetermined full rank linear least squares problem. We recall theoretical results obtained in Arioli, Baboulin and Gratton, SIMAX 29(2):413--433, 2007, on conditioning of the least squa res solution and the components of the solution when the matrix perturbations are measured in Frobenius or spectral norms. Then we define computable estimates for these condition numbers and we interpret them in terms of statistical quantities. In particular, we show that, in the classical linear statistical model, the ratio of the variance of one component of the solution by the variance of the right-hand side is exactly the condition number of this solution component when perturbations on the right-hand side are considered. We also provide fragment codes using LAPACK routines to compute the variance-covariance matrix and the least squares conditioning and we give the corresponding computational cost. Finally we present a small historical numerical example that was used by Laplace in Theorie Analytique des Probabilites, 1820, for computing the mass of Jupiter and experiments from the space industry with real physical data.
124 - Qiaohua Liu , Zhigang Jia 2020
This paper is devoted to condition numbers of the total least squares problem with linear equality constraint (TLSE). With novel limit techniques, closed formulae for normwise, mixed and componentwise condition numbers of the TLSE problem are derived . Compact expressions and upper bounds for these condition numbers are also given to avoid the costly Kronecker product-based operations. The results unify the ones for the TLS problem. For TLSE problems with equilibratory input data, numerical experiments illustrate that normwise condition number-based estimate is sharp to evaluate the forward error of the solution, while for sparse and badly scaled matrices, mixed and componentwise condition numbers-based estimations are much tighter.
The total least squares problem with the general Tikhonov regularization can be reformulated as a one-dimensional parametric minimization problem (PM), where each parameterized function evaluation corresponds to solving an n-dimensional trust region subproblem. Under a mild assumption, the parametric function is differentiable and then an efficient bisection method has been proposed for solving (PM) in literature. In the first part of this paper, we show that the bisection algorithm can be greatly improved by reducing the initially estimated interval covering the optimal parameter. It is observed that the bisection method cannot guarantee to find the globally optimal solution since the nonconvex (PM) could have a local non-global minimizer. The main contribution of this paper is to propose an efficient branch-and-bound algorithm for globally solving (PM), based on a novel underestimation of the parametric function over any given interval using only the information of the parametric function evaluations at the two endpoints. We can show that the new algorithm(BTD Algorithm) returns a global epsilon-approximation solution in a computational effort of at most O(n^3/epsilon) under the same assumption as in the bisection method. The numerical results demonstrate that our new global optimization algorithm performs even much faster than the improved version of the bisection heuristic algorithm.
In this work, we propose a novel sampling method for Design of Experiments. This method allows to sample such input values of the parameters of a computational model for which the constructed surrogate model will have the least possible approximation error. High efficiency of the proposed method is demonstrated by its comparison with other sampling techniques (LHS, Sobol sequence sampling, and Maxvol sampling) on the problem of least-squares polynomial approximation. Also, numerical experiments for the Lebesgue constant growth for the points sampled by the proposed method are carried out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا