ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised identification of Floquet topological phase boundaries

68   0   0.0 ( 0 )
 نشر من قبل Jiangbin Gong Prof.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonequilibrium topological matter has been a fruitful topic of both theoretical and experimental interest. A great variety of exotic topological phases unavailable in static systems may emerge under nonequilibrium situations, often challenging our physical intuitions. How to locate the borders between different nonequilibrium topological phases is an important issue to facilitate topological characterization and further understand phase transition behaviors. In this work, we develop an unsupervised machine-learning protocol to distinguish between different Floquet (periodically driven) topological phases, by incorporating the systems dynamics within one driving period, adiabatic deformation in the time dimension, plus the systems symmetry all into our machine learning algorithm. Results from two rich case studies indicate that machine learning is able to reliably reveal intricate topological phase boundaries and can hence be a powerful tool to discover novel topological matter afforded by the time dimension.



قيم البحث

اقرأ أيضاً

77 - Weiwei Zhu , Yidong Chong , 2021
The topological characterization of nonequilibrium topological matter is highly nontrivial because familiar approaches designed for equilibrium topological phases may not apply. In the presence of crystal symmetry, Floquet topological insulator state s cannot be easily distinguished from normal insulators by a set of symmetry eigenvalues at high symmetry points in the Brillouin zone. This work advocates a physically motivated, easy-to-implement approach to enhance the symmetry analysis to distinguish between a variety of Floquet topological phases. Using a two-dimensional inversion-symmetric periodically-driven system as an example, we show that the symmetry eigenvalues for anomalous Floquet topological states, of both first-order and second-order, are the same as for normal atomic insulators. However, the topological states can be distinguished from one another and from normal insulators by inspecting the occurrence of stable symmetry inversion points in their microscopic dynamics. The analysis points to a simple picture for understanding how topological boundary states can coexist with localized bulk states in anomalous Floquet topological phases.
We propose a versatile framework to dynamically generate Floquet higher-order topological insulators by multi-step driving of topologically trivial Hamiltonians. Two analytically solvable examples are used to illustrate this procedure to yield Floque t quadrupole and octupole insulators with zero- and/or $pi$-corner modes protected by mirror symmetries. Furthermore, we introduce dynamical topological invariants from the full unitary return map and show its phase bands contain Weyl singularities whose topological charges form dynamical multipole moments in the Brillouin zone. Combining them with the topological index of Floquet Hamiltonian gives a pair of $mathbb{Z}_2$ invariant $ u_0$ and $ u_pi$ which fully characterize the higher-order topology and predict the appearance of zero- and $pi$-corner modes. Our work establishes a systematic route to construct and characterize Floquet higher-order topological phases.
We show that non-Hermiticity enables topological phases with unidirectional transport in one-dimensional Floquet chains. The topological signatures of these phases are non-contractible loops in the spectrum of the Floquet propagator that are separate d by an imaginary gap. Such loops occur exclusively in non-Hermitian Floquet systems. We define the corresponding topological invariant as the winding number of the Floquet propagator relative to the imaginary gap. To relate topology to transport, we introduce the concept of regularized dynamics of non-Hermitian chains. We establish that, under the conditions of regularized dynamics, transport is quantized in so far as the charge transferred over one period equals the topological winding number. We illustrate these theoretical findings with the example of a Floquet chain that features a topological phase transition and acts as a charge pump in the non-trivial topological phase. We finally discuss whether these findings justify the notion that non-Hermitian Floquet chains support topological transport.
In Hermitian topological systems, the bulk-boundary correspondence strictly constraints boundary transport to values determined by the topological properties of the bulk. We demonstrate that this constraint can be lifted in non-Hermitian Floquet insu lators. Provided that the insulator supports an anomalous topological phase, non-Hermiticity allows us to modify the boundary states independently of the bulk, without sacrificing their topological nature. We explore the ensuing possibilities for a Floquet topological insulator with non-Hermitian time-reversal symmetry, where the helical transport via counterpropagating boundary states can be tailored in ways that overcome the constraints imposed by Hermiticity. Non-Hermitian boundary state engineering specifically enables the enhancement of boundary transport relative to bulk motion, helical transport with a preferred direction, and chiral transport in the same direction on opposite boundaries. We explain the experimental relevance of our findings for the example of photonic waveguide lattices.
105 - Weiwei Zhu , Y. D. Chong , 2020
Floquet higher order topological insulators (FHOTIs) are a novel topological phase that can occur in periodically driven lattices. An appropriate experimental platform to realize FHOTIs has not yet been identified. We introduce a periodically-driven bipartite (two-band) system that hosts FHOTI phases, and predict that this lattice can be realized in experimentally-realistic optical waveguide arrays, similar to those previously used to study anomalous Floquet insulators. The model exhibits interesting phase transitions from first-order to second-order topological matter by tuning a coupling strength parameter, without breaking lattice symmetry. In the FHOTI phase, the lattice hosts corner modes at eigenphase $0$ or $pi$, which are robust against disorder in the individual couplings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا