ﻻ يوجد ملخص باللغة العربية
In Hermitian topological systems, the bulk-boundary correspondence strictly constraints boundary transport to values determined by the topological properties of the bulk. We demonstrate that this constraint can be lifted in non-Hermitian Floquet insulators. Provided that the insulator supports an anomalous topological phase, non-Hermiticity allows us to modify the boundary states independently of the bulk, without sacrificing their topological nature. We explore the ensuing possibilities for a Floquet topological insulator with non-Hermitian time-reversal symmetry, where the helical transport via counterpropagating boundary states can be tailored in ways that overcome the constraints imposed by Hermiticity. Non-Hermitian boundary state engineering specifically enables the enhancement of boundary transport relative to bulk motion, helical transport with a preferred direction, and chiral transport in the same direction on opposite boundaries. We explain the experimental relevance of our findings for the example of photonic waveguide lattices.
Eigenenergies of a non-Hermitian system without parity-time symmetry are complex in general. Here, we show that the chiral boundary states of non-Hermitian topological insulators without parity-time symmetry can be Hermitian with real eigenenergies u
Periodically driven systems can host so called anomalous topological phases, in which protected boundary states coexist with topologically trivial Floquet bulk bands. We introduce an anomalous version of reflection symmetry protected topological crys
We show that non-Hermiticity enables topological phases with unidirectional transport in one-dimensional Floquet chains. The topological signatures of these phases are non-contractible loops in the spectrum of the Floquet propagator that are separate
The breakdown of the bulk-boundary correspondence in non-Hermitian (NH) topological systems is an open, controversial issue. In this paper, to resolve this issue, we ask the following question: Can a (global) topological invariant completely describe
Anderson localization in two-dimensional topological insulators takes place via the so-called levitation and pair annihilation process. As disorder is increased, extended bulk states carrying opposite topological invariants move towards each other in