ترغب بنشر مسار تعليمي؟ اضغط هنا

Infinite Distance Limits and Information Theory

37   0   0.0 ( 0 )
 نشر من قبل John Stout
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف John Stout




اسأل ChatGPT حول البحث

The classical information metric provides a unique notion of distance on the space of probability distributions with a well-defined operational interpretation: two distributions are far apart if they are readily distinguishable from one another. The quantum information metric generalizes this to the space of quantum states, and thus defines a notion of distance on an arbitrary continuous family of quantum field theories via their vacua that is proportional to the metric on moduli space when restricted appropriately. In this paper, we study this metric and its operational interpretation in a variety of examples. We specifically focus on why and how infinite distance singularities appear. We argue that two theories are infinitely far apart if they are hyper-distinguishable: that is, if they can be distinguished from one another, with certainty, using only a few measurements. We explain why such singularities appear for the simple harmonic oscillator yet are absent for quantum field theories near a typical quantum critical point, and show how an infinite distance point can emerge when a tower of fields degenerates in mass. Finally, we use this perspective to provide a potential bottom-up motivation for the Swampland Distance Conjecture and indicate how we might extend it beyond current lampposts.

قيم البحث

اقرأ أيضاً

The Swampland Distance Conjecture proposes that approaching infinite distances in field space an infinite tower of states becomes exponentially light. We study this conjecture for the complex structure moduli space of Calabi-Yau manifolds. In this co ntext, we uncover significant structure within the proposal by showing that there is a rich spectrum of different infinite distance loci that can be classified by certain topological data derived from an associated discrete symmetry. We show how this data also determines the rules for how the different infinite distance loci can intersect and form an infinite distance network. We study the properties of the intersections in detail and, in particular, propose an identification of the infinite tower of states near such intersections in terms of what we term charge orbits. These orbits have the property that they are not completely local, but depend on data within a finite patch around the intersection, thereby forming an initial step towards understanding global aspects of the distance conjecture in field spaces. Our results follow from a deep mathematical structure captured by the so-called orbit theorems, which gives a handle on singularities in the moduli space through mixed Hodge structures, and is related to a local notion of mirror symmetry thereby allowing us to apply it also to the large volume setting. These theorems are general and apply far beyond Calabi-Yau moduli spaces, leading us to propose that similarly the infinite distance structures we uncover are also more general.
162 - Paul Romatschke 2021
I derive an exact integral expression for the ratio of shear viscosity over entropy density $frac{eta}{s}$ for the massless (critical) O(N) model at large N with quartic interactions. The calculation is set up and performed entirely from the field th eory side using a non-perturbative resummation scheme that captures all contributions to leading order in large N. In 2+1d, $frac{eta}{s}$ is evaluated numerically at all values of the coupling. For infinite coupling, I find $frac{eta}{s}simeq 0.42(1)times N$. I show that this strong coupling result for the viscosity is universal for a large class of interacting bosonic O(N) models.
While Kolmogorov complexity is the accepted absolute measure of information content in an individual finite object, a similarly absolute notion is needed for the information distance between two individual objects, for example, two pictures. We give several natural definitions of a universal information metric, based on length of shortest programs for either ordinary computations or reversible (dissipationless) computations. It turns out that these definitions are equivalent up to an additive logarithmic term. We show that the information distance is a universal cognitive similarity distance. We investigate the maximal correlation of the shortest programs involved, the maximal uncorrelation of programs (a generalization of the Slepian-Wolf theorem of classical information theory), and the density properties of the discrete metric spaces induced by the information distances. A related distance measures the amount of nonreversibility of a computation. Using the physical theory of reversible computation, we give an appropriate (universal, anti-symmetric, and transitive) measure of the thermodynamic work required to transform one object in another object by the most efficient process. Information distance between individual objects is needed in pattern recognition where one wants to express effective notions of pattern similarity or cognitive similarity between individual objects and in thermodynamics of computation where one wants to analyse the energy dissipation of a computation from a particular input to a particular output.
Compactifying type $A_{N-1}$ 6d ${cal N}{=}(2,0)$ supersymmetric CFT on a product manifold $M^4timesSigma^2=M^3timestilde{S}^1times S^1times{cal I}$ either over $S^1$ or over $tilde{S}^1$ leads to maximally supersymmetric 5d gauge theories on $M^4tim es{cal I}$ or on $M^3timesSigma^2$, respectively. Choosing the radii of $S^1$ and $tilde{S}^1$ inversely proportional to each other, these 5d gauge theories are dual to one another since their coupling constants $e^2$ and $tilde{e}^2$ are proportional to those radii respectively. We consider their non-Abelian but non-supersymmetric extensions, i.e. SU($N$) Yang-Mills theories on $M^4times{cal I}$ and on $M^3timesSigma^2$, where $M^4supset M^3=mathbb R_ttimes T_p^2$ with time $t$ and a punctured 2-torus, and ${cal I}subsetSigma^2$ is an interval. In the first case, shrinking ${cal I}$ to a point reduces to Yang-Mills theory or to the Skyrme model on $M^4$, depending on the method chosen for the low-energy reduction. In the second case, scaling down the metric on $M^3$ and employing the adiabatic method, we derive in the infrared limit a non-linear SU($N$) sigma model with a baby-Skyrme-type term on $Sigma^2$, which can be reduced further to $A_{N-1}$ Toda theory.
We use holographic methods to characterize the RG flow of quantum information in a Chern-Simons theory coupled to massive fermions. First, we use entanglement entropy and mutual information between strips to derive the dimension of the RG-driving ope rator and a monotonic c-function. We then display a scaling regime where, unlike in a CFT, the mutual information between strips changes non-monotonically with strip width, vanishing in both IR and UV but rising to a maximum at intermediate scales. The associated information transitions also contribute to non-monotonicity in the conditional mutual information which characterizes the independence of neighboring strips after conditioning on a third. Finally, we construct a measure of extensivity which tests to what extent information that region A shares with regions B and C is additive. In general, mutual information is super-extensive in holographic theories, and we might expect super-extensivity to be maximized in CFTs since they are scale-free. Surprisingly, our massive theory is more super-extensive than a CFT in a range of scales near the UV limit, although it is less super-extensive than a CFT at all lower scales. Our analysis requires the full ten-dimensional dual gravity background, and the extremal surfaces computing entanglement entropy explore all of these dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا