ترغب بنشر مسار تعليمي؟ اضغط هنا

Infinite Distance Networks in Field Space and Charge Orbits

346   0   0.0 ( 0 )
 نشر من قبل Eran Palti
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Swampland Distance Conjecture proposes that approaching infinite distances in field space an infinite tower of states becomes exponentially light. We study this conjecture for the complex structure moduli space of Calabi-Yau manifolds. In this context, we uncover significant structure within the proposal by showing that there is a rich spectrum of different infinite distance loci that can be classified by certain topological data derived from an associated discrete symmetry. We show how this data also determines the rules for how the different infinite distance loci can intersect and form an infinite distance network. We study the properties of the intersections in detail and, in particular, propose an identification of the infinite tower of states near such intersections in terms of what we term charge orbits. These orbits have the property that they are not completely local, but depend on data within a finite patch around the intersection, thereby forming an initial step towards understanding global aspects of the distance conjecture in field spaces. Our results follow from a deep mathematical structure captured by the so-called orbit theorems, which gives a handle on singularities in the moduli space through mixed Hodge structures, and is related to a local notion of mirror symmetry thereby allowing us to apply it also to the large volume setting. These theorems are general and apply far beyond Calabi-Yau moduli spaces, leading us to propose that similarly the infinite distance structures we uncover are also more general.

قيم البحث

اقرأ أيضاً

It has been conjectured that in theories consistent with quantum gravity infinite distances in field space coincide with an infinite tower of states becoming massless exponentially fast in the proper field distance. The complex-structure moduli space of Calabi-Yau manifolds is a good testing ground for this conjecture since it is known to encode quantum gravity physics. We study infinite distances in this setting and present new evidence for the above conjecture. Points in moduli space which are at infinite proper distance along any path are characterised by an infinite order monodromy matrix. We utilise the nilpotent orbit theorem to show that for a large class of such points the monodromy matrix generates an infinite orbit within the spectrum of BPS states. We identify an infinite tower of states with this orbit. Further, the theorem gives the local metric on the moduli space which can be used to show that the mass of the states decreases exponentially fast upon approaching the point. We also propose a reason for why infinite distances are related to infinite towers of states. Specifically, we present evidence that the infinite distance itself is an emergent quantum phenomenon induced by integrating out at one-loop the states that become massless. Concretely, we show that the behaviour of the field space metric upon approaching infinite distance can be recovered from integrating out the BPS states. Similarly, at infinite distance the gauge couplings of closed-string Abelian gauge symmetries vanish in a way which can be matched onto integrating out the infinite tower of charged BPS states. This presents evidence towards the idea that also the gauge theory weak-coupling limit can be thought of as emergent.
36 - John Stout 2021
The classical information metric provides a unique notion of distance on the space of probability distributions with a well-defined operational interpretation: two distributions are far apart if they are readily distinguishable from one another. The quantum information metric generalizes this to the space of quantum states, and thus defines a notion of distance on an arbitrary continuous family of quantum field theories via their vacua that is proportional to the metric on moduli space when restricted appropriately. In this paper, we study this metric and its operational interpretation in a variety of examples. We specifically focus on why and how infinite distance singularities appear. We argue that two theories are infinitely far apart if they are hyper-distinguishable: that is, if they can be distinguished from one another, with certainty, using only a few measurements. We explain why such singularities appear for the simple harmonic oscillator yet are absent for quantum field theories near a typical quantum critical point, and show how an infinite distance point can emerge when a tower of fields degenerates in mass. Finally, we use this perspective to provide a potential bottom-up motivation for the Swampland Distance Conjecture and indicate how we might extend it beyond current lampposts.
We determine the two-centered generic charge orbits of magical N = 2 and maximal N = 8 supergravity theories in four dimensions. These orbits are classified by seven U-duality invariant polynomials, which group together into four invariants under the horizontal symmetry group SL(2,R). These latter are expected to disentangle different physical properties of the two-centered black-hole system. The invariant with the lowest degree in charges is the symplectic product (Q1,Q2), known to control the mutual non-locality of the two centers.
We propose a way to encode acceleration directly into quantum fields, establishing a new class of fields. Accelerated quantum fields, as we have named them, have some very interesting properties. The most important is that they provide a mathematical ly consistent way to quantize space-time in the same way that energy and momentum are quantized in standard quantum field theories.
We study bubble universe collisions in the ultrarelativistic limit with the new feature of allowing for nontrivial curvature in field space. We establish a simple geometrical interpretation of such collisions in terms of a double family of field prof iles whose tangent vector fields stand in mutual parallel transport. This provides a generalization of the well-known flat field space limit of the free passage approximation. We investigate the limits of this approximation and illustrate our analytical results with a numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا