ترغب بنشر مسار تعليمي؟ اضغط هنا

Unraveling the Flux-Averaged Neutrino-Nucleus Cross Section

125   0   0.0 ( 0 )
 نشر من قبل Omar Benhar
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Omar Benhar




اسأل ChatGPT حول البحث

The interpretation of the nuclear cross sections measured using accelerator neutrino beams involve severe difficulties, arising primarily from the average over the incoming neutrino flux. The broad energy distribution of the beam particles hampers the determination of the energy transfer to the nuclear target, the knowledge of which is needed to pin down the dominant reaction mechanism. Overcoming this problem requires the development of a theoretical approach suitable to describe neutrino interactions at energies ranging from hundreds of MeV to few GeV. In this paper, it is argued that the approach based on the factorisation of the nuclear cross section provides a consistent framework for the calculation of neutrino-nucleus interactions in both the quasi elastic and inelastic channels. The near-degeneracy between theoretical models based on different assumptions, and the use of electron scattering data to advance the understanding of neutrino-nucleus cross sections are also discussed.

قيم البحث

اقرأ أيضاً

We present the results of our calculation which has been performed to study the nuclear effects in the quasielastic, inelastic and deep inelastic scattering of neutrinos(antineutrinos) from nuclear targets. These calculations are done in the local de nsity approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reaction. The inelastic reaction leading to production of pions is calculated in a $Delta $- dominance model taking into account the renormalization of $Delta$ properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We discuss the nuclear effects in the $F_{3}^{A}(x)$ structure function in the deep inelastic neutrino(antineutrino) reaction using a relativistic framework to describe the nucleon spectral function in the nucleus.
The description of the inelastic proton -- nucleus cross section at very high energies is still an open question. The current theoretical uncertainty has direct impact on the predictions of the cosmic ray and neutrino physics observables. In this pap er we consider different models for the treatment of $sigma_{inel}^{pA}$, compare its predictions at ultrahigh cosmic ray energies and estimate the prompt neutrino flux at the neutrino energies that have been probed by the IceCube Observatory. We demonstrate that depending of the model used to describe $sigma_{inel}^{pA}$, the predictions for the prompt neutrino flux can differ by a factor of order of three. Such result demonstrate the importance of a precise measurement of the inelastic proton -- nucleus cross section at high energies.
195 - N. Rocco , C. Barbieri 2018
We compute inclusive electron-nucleus cross sections using ab initio spectral functions of $^4$He and $^{16}$O obtained within the Self Consistent Greens Function approach. The formalism adopted is based on the factorization of the spectral function and the nuclear transition matrix elements. This allows to provide an accurate description of nuclear dynamics and to account for relativistic effects in the interaction vertex. Our calculations use a saturating chiral Hamiltonian in order reproduce the correct nuclear sizes. When final state interactions for the struck particle are accounted for, we find nice agreement between the data and the theory for the inclusive electron-$^{16}$O cross section. The results lay the foundations for future applications of the Self Consistent Greens Function method, in both closed and open shell nuclei, to neutrino data analysis. This work also presents results for the point-proton, charge and single-nucleon momentum distribution of the same two nuclei. The center of mass can affect these quantities for light nuclei and cannot be separated cleanly in most ab initio post-Hartree-Fock methods. In order to address this, we developed a Metropolis Monte Carlo calculation in which the center of mass coordinate can be subtracted exactly from the trial wave function and the expectation values. We gauged this effect for $^4$He by removing the center of mass effect from the Optimal Reference State wave function that is generated during the Self Consistent Greens Function calculations. Our findings clearly indicate that the residual center of mass contribution strongly modifies calculated matter distributions with respect to those obtained in the intrinsic frame. Hence, its subtraction is crucial for a correct description of light nuclei.
The inclusive neutrino/antineutrino-induced charged and neutral current reaction cross-sections in $^{12}C$, $^{16}O$, $^{40}Ar$, $^{56}Fe$ and $^{208}Pb$ in the energy region of supernova neutrinos/antineutrinos are studied. The calculations are per formed in the local density approximation (LDA) taking into account the effects due to Pauli blocking, Fermi motion and the renormalization of weak transition strengths in the nuclear medium. The effect of Coulomb distortion of the lepton produced in the charged current reactions has also been included. The numerical results for the energy dependence of the cross-section $sigma(E)$ as well as the flux averaged cross-section and event rates for the charged lepton production in the case of some supernova neutrino/antineutrino fluxes recently discussed in the literature have been presented. We have also given the flux-averaged angular and energy distributions of the charged leptons corresponding to these fluxes.
The energy--zenith angular event distribution in a neutrino telescope provides a unique tool to determine at the same time the neutrino-nucleon cross section at extreme kinematical regions, and the high energy neutrino flux. By using a simple paramet rization for fluxes and cross sections, we present a sensitivity analysis for the case of a km^3 neutrino telescope. In particular, we consider the specific case of an under-water Mediterranean telescope placed at the NEMO site, although most of our results also apply to an under-ice detector such as IceCube. We determine the sensitivity to departures from standard values of the cross sections above 1 PeV which can be probed independently from an a-priori knowledge of the normalization and energy dependence of the flux. We also stress that the capability to tag downgoing neutrino showers in the PeV range against the cosmic ray induced background of penetrating muons appears to be a crucial requirement to derive meaningful constraints on the cross section.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا