ﻻ يوجد ملخص باللغة العربية
We use 78 reverberation-measured Mg II time-lag quasars (QSOs) in the redshift range $0.0033 leq z leq 1.89$ to constrain cosmological parameters in six different cosmological models. The basis of our method is the use of the radius-luminosity or $R-L$ relation to standardize these 78 Mg II QSOs. In each cosmological model we simultaneously determine $R-L$ relation and cosmological model parameters, thus avoiding the circularity problem. We find that the $R-L$ relation parameter values are independent of the cosmological model used in the analysis thus establishing that current Mg II QSOs are standardizable candles. Cosmological constraints obtained using these QSOs are significantly weaker than, but consistent with, those obtained from a joint analysis of baryon acoustic oscillation (BAO) observations and Hubble parameter [$H(z)$] measurements. So, we also analyse these QSOs in conjunction with the BAO + $H(z)$ data and find cosmological constraints consistent with the standard spatially-flat $Lambda$CDM model as well as with mild dark energy dynamics and a little spatial curvature. A larger sample of higher-quality reverberation-measured QSOs should have a smaller intrinsic dispersion and so should provide tighter constraints on cosmological parameters.
We use six different cosmological models to study the recently-released compilation of X-ray and UV flux measurements of 2038 quasars (QSOs) which span the redshift range $0.009 leq z leq 7.5413$. We find, for the full QSO data set, that the paramete
Risaliti and Lusso have compiled X-ray and UV flux measurements of 1598 quasars (QSOs) in the redshift range $0.036 leq z leq 5.1003$, part of which, $z sim 2.4 - 5.1$, is largely cosmologically unprobed. In this paper we use these QSO measurements,
Space-borne gravitational wave detectors like TianQin are expected to detect gravitational wave signals emitted by the mergers of massive black hole binaries. Luminosity distance information can be obtained from gravitational wave observations, and o
Starting from the luminosity-redshift relation recently given up to second order in the Poisson gauge, we calculate the effects of the realistic stochastic background of perturbations of the so-called concordance model on the combined light-cone and
The observed constraints on the variability of the proton to electron mass ratio $mu$ and the fine structure constant $alpha$ are used to establish constraints on the variability of the Quantum Chromodynamic Scale and a combination of the Higgs Vacuu