ترغب بنشر مسار تعليمي؟ اضغط هنا

Standardizing reverberation-measured Mg II time-lag quasars, by using the radius-luminosity relation, and constraining cosmological model parameters

86   0   0.0 ( 0 )
 نشر من قبل Narayan Khadka
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use 78 reverberation-measured Mg II time-lag quasars (QSOs) in the redshift range $0.0033 leq z leq 1.89$ to constrain cosmological parameters in six different cosmological models. The basis of our method is the use of the radius-luminosity or $R-L$ relation to standardize these 78 Mg II QSOs. In each cosmological model we simultaneously determine $R-L$ relation and cosmological model parameters, thus avoiding the circularity problem. We find that the $R-L$ relation parameter values are independent of the cosmological model used in the analysis thus establishing that current Mg II QSOs are standardizable candles. Cosmological constraints obtained using these QSOs are significantly weaker than, but consistent with, those obtained from a joint analysis of baryon acoustic oscillation (BAO) observations and Hubble parameter [$H(z)$] measurements. So, we also analyse these QSOs in conjunction with the BAO + $H(z)$ data and find cosmological constraints consistent with the standard spatially-flat $Lambda$CDM model as well as with mild dark energy dynamics and a little spatial curvature. A larger sample of higher-quality reverberation-measured QSOs should have a smaller intrinsic dispersion and so should provide tighter constraints on cosmological parameters.



قيم البحث

اقرأ أيضاً

We use six different cosmological models to study the recently-released compilation of X-ray and UV flux measurements of 2038 quasars (QSOs) which span the redshift range $0.009 leq z leq 7.5413$. We find, for the full QSO data set, that the paramete rs of the X-ray and UV luminosities $L_X-L_{UV}$ relation used to standardized these QSOs depend on the cosmological model used to determine these parameters, i.e, it appears that the full QSO data set include QSOs that are not standardized and so cannot be used for the purpose of constraining cosmological parameters. Subsets of the QSO data, restricted to redshifts $z lesssim 1.5-1.7$ obey the $L_X-L_{UV}$ relation in a cosmological-model-independent manner, and so can be used to constrain cosmological parameters. The cosmological constraints from these lower-$z$, smaller QSO data subsets are mostly consistent with, but significantly weaker than, those that follow from baryon acoustic oscillation and Hubble parameter measurements.
Risaliti and Lusso have compiled X-ray and UV flux measurements of 1598 quasars (QSOs) in the redshift range $0.036 leq z leq 5.1003$, part of which, $z sim 2.4 - 5.1$, is largely cosmologically unprobed. In this paper we use these QSO measurements, alone and in conjunction with baryon acoustic oscillation (BAO) and Hubble parameter [$H(z)$] measurements, to constrain cosmological parameters in six different cosmological models, each with two different Hubble constant priors. In most of these models, given the larger uncertainties, the QSO cosmological parameter constraints are mostly consistent with those from the $H(z)$ + BAO data. A somewhat significant exception is the non-relativistic matter density parameter $Omega_{m0}$ where the QSO data favors $Omega_{m0} sim 0.5 - 0.6$ in most models. Consequently in joint analyses of QSO data with $H(z)$ + BAO data the one-dimensional $Omega_{m0}$ distributions shift slightly toward larger values. A joint analysis of the QSO + $H(z)$ + BAO data is consistent with the current standard model, spatially-flat $Lambda$CDM, but mildly favors closed spatial hypersurfaces and dynamical dark energy. Since the higher $Omega_{m0}$ values favored by the QSO data appear to be associated with the $z sim 2 - 5$ part of these data, and conflict somewhat with strong indications for $Omega_{m0} sim 0.3$ from most $z < 2.5$ data as well as from the cosmic microwave background anisotropy data at $z sim 1100$, in most models, the larger QSO data $Omega_{m0}$ is possibly more indicative of an issue with the $z sim 2 - 5$ QSO data than of an inadequacy of the standard flat $Lambda$CDM model.
Space-borne gravitational wave detectors like TianQin are expected to detect gravitational wave signals emitted by the mergers of massive black hole binaries. Luminosity distance information can be obtained from gravitational wave observations, and o ne can perform cosmological inference if redshift information can also be extracted, which would be straightforward if an electro-magnetic counterpart exists. In this work, we concentrate on the conservative scenario where the electro-magnetic counterparts are not available, and comprehensively study if cosmological parameters can be inferred through a statistical approach, utilizing the non-uniform distribution of galaxies as well as the black hole mass-host galaxy bulge luminosity relationship. By adopting different massive black hole binary merger models, and assuming different detector configurations, we conclude that the statistical inference of cosmological parameters is indeed possible. TianQin is expected to constrain the Hubble constant to a relative error around 7%, and in the most optimistic case, it is possible to achieve the level of 1.5%, if a multi-detector network of TianQin and LISA is assumed. We find that without electro-magnetic counterparts, all other cosmological parameters are poorly constrained. However, in the optimistic case, where electro-magnetic counterparts are available, one can constrain all cosmological parameters in the standard Lambda cold dark matter cosmology. It is even possible to study the evolution of equation of state for the dark energy.
Starting from the luminosity-redshift relation recently given up to second order in the Poisson gauge, we calculate the effects of the realistic stochastic background of perturbations of the so-called concordance model on the combined light-cone and ensemble average of various functions of the luminosity distance, and on their variance, as functions of redshift. We apply a gauge-invariant light-cone averaging prescription which is free from infrared and ultraviolet divergences, making our results robust with respect to changes of the corresponding cutoffs. Our main conclusions, in part already anticipated in a recent letter for the case of a perturbation spectrum computed in the linear regime, are that such inhomogeneities not only cannot avoid the need for dark energy, but also cannot prevent, in principle, the determination of its parameters down to an accuracy of order $10^{-3}-10^{-5}$, depending on the averaged observable and on the regime considered for the power spectrum. However, taking into account the appropriate corrections arising in the non-linear regime, we predict an irreducible scatter of the data approaching the 10% level which, for limited statistics, will necessarily limit the attainable precision. The predicted dispersion appears to be in good agreement with current observational estimates of the distance-modulus variance due to Doppler and lensing effects (at low and high redshifts, respectively), and represents a challenge for future precision measurements.
137 - Rodger I. Thompson 2017
The observed constraints on the variability of the proton to electron mass ratio $mu$ and the fine structure constant $alpha$ are used to establish constraints on the variability of the Quantum Chromodynamic Scale and a combination of the Higgs Vacuu m Expectation Value and the Yukawa couplings. Further model dependent assumptions provide constraints on the Higgs VEV and the Yukawa couplings separately. A primary conclusion is that limits on the variability of dimensionless fundamental constants such as $mu$ and $alpha$ provide important constraints on the parameter space of new physics and cosmologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا