ترغب بنشر مسار تعليمي؟ اضغط هنا

Average and dispersion of the luminosity-redshift relation in the concordance model

109   0   0.0 ( 0 )
 نشر من قبل Giovanni Marozzi Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from the luminosity-redshift relation recently given up to second order in the Poisson gauge, we calculate the effects of the realistic stochastic background of perturbations of the so-called concordance model on the combined light-cone and ensemble average of various functions of the luminosity distance, and on their variance, as functions of redshift. We apply a gauge-invariant light-cone averaging prescription which is free from infrared and ultraviolet divergences, making our results robust with respect to changes of the corresponding cutoffs. Our main conclusions, in part already anticipated in a recent letter for the case of a perturbation spectrum computed in the linear regime, are that such inhomogeneities not only cannot avoid the need for dark energy, but also cannot prevent, in principle, the determination of its parameters down to an accuracy of order $10^{-3}-10^{-5}$, depending on the averaged observable and on the regime considered for the power spectrum. However, taking into account the appropriate corrections arising in the non-linear regime, we predict an irreducible scatter of the data approaching the 10% level which, for limited statistics, will necessarily limit the attainable precision. The predicted dispersion appears to be in good agreement with current observational estimates of the distance-modulus variance due to Doppler and lensing effects (at low and high redshifts, respectively), and represents a challenge for future precision measurements.



قيم البحث

اقرأ أيضاً

We demonstrate that creation of dark-matter particles at a constant rate implies the existence of a cosmological term that decays linearly with the Hubble rate. We discuss the cosmological model that arises in this context and test it against observa tions of the first acoustic peak in the cosmic microwave background (CMB) anisotropy spectrum, the Hubble diagram for supernovas of type Ia (SNIa), the distance scale of baryonic acoustic oscillations (BAO) and the distribution of large scale structures (LSS). We show that a good concordance is obtained, albeit with a higher value of the present matter abundance than in the Lambda CDM model. We also comment on general features of the CMB anisotropy spectrum and on the cosmic coincidence problem.
116 - Arman Shafieloo 2018
We combine model-independent reconstructions of the expansion history from the latest Pantheon supernovae distance modulus compilation and measurements from baryon acoustic oscillation to test some important aspects of the concordance model of cosmol ogy namely the FLRW metric and flatness of spatial curvature. We then use the reconstructed expansion histories to fit growth measurement from redshift-space distortion and obtain strong constraints on $(Omega_mathrm{m},gamma,sigma_8)$ in a model independent manner. Our results show consistency with a spatially flat FLRW Universe with general relativity to govern the perturbation in the structure formation and the cosmological constant as dark energy. However, we can also see some hints of tension among different observations within the context of the concordance model related to high redshift observations ($z > 1$) of the expansion history. This supports earlier findings of Sahni et al. (2014) & Zhao et al. (2017) and highlights the importance of precise measurement of expansion history and growth of structure at high redshifts.
We use 78 reverberation-measured Mg II time-lag quasars (QSOs) in the redshift range $0.0033 leq z leq 1.89$ to constrain cosmological parameters in six different cosmological models. The basis of our method is the use of the radius-luminosity or $R- L$ relation to standardize these 78 Mg II QSOs. In each cosmological model we simultaneously determine $R-L$ relation and cosmological model parameters, thus avoiding the circularity problem. We find that the $R-L$ relation parameter values are independent of the cosmological model used in the analysis thus establishing that current Mg II QSOs are standardizable candles. Cosmological constraints obtained using these QSOs are significantly weaker than, but consistent with, those obtained from a joint analysis of baryon acoustic oscillation (BAO) observations and Hubble parameter [$H(z)$] measurements. So, we also analyse these QSOs in conjunction with the BAO + $H(z)$ data and find cosmological constraints consistent with the standard spatially-flat $Lambda$CDM model as well as with mild dark energy dynamics and a little spatial curvature. A larger sample of higher-quality reverberation-measured QSOs should have a smaller intrinsic dispersion and so should provide tighter constraints on cosmological parameters.
195 - D. J. Brooker 2016
We propose a test of single-scalar inflation based on using the well-measured scalar power spectrum to reconstruct the tensor power spectrum, up to a single integration constant. Our test is a sort of integrated version of the single-scalar consisten cy relation. This sort of test can be used effectively, even when the tensor power spectrum is measured too poorly to resolve the tensor spectral index. We give an example using simulated data based on a hypothetical detection with tensor-to-scalar ratio $r = 0.01$. Our test can also be employed for correlating scalar and tensor features in the far future when the data is good.
The concordance of the $Lambda$CDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements ap pear at face value to favour a spatially closed Universe with curvature parameter $Omega_K<0$. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, $P(k)$, from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find $Omega_K=0.0023 pm 0.0028$. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit $chi^2$ suggests a similar level of tension between Planck and $P(k)$ under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا