ﻻ يوجد ملخص باللغة العربية
Recent years have witnessed great success in handling node classification tasks with Graph Neural Networks (GNNs). However, most existing GNNs are based on the assumption that node samples for different classes are balanced, while for many real-world graphs, there exists the problem of class imbalance, i.e., some classes may have much fewer samples than others. In this case, directly training a GNN classifier with raw data would under-represent samples from those minority classes and result in sub-optimal performance. This paper presents GraphMixup, a novel mixup-based framework for improving class-imbalanced node classification on graphs. However, directly performing mixup in the input space or embedding space may produce out-of-domain samples due to the extreme sparsity of minority classes; hence we construct semantic relation spaces that allows the Feature Mixup to be performed at the semantic level. Moreover, we apply two context-based self-supervised techniques to capture both local and global information in the graph structure and then propose Edge Mixup specifically for graph data. Finally, we develop a emph{Reinforcement Mixup} mechanism to adaptively determine how many samples are to be generated by mixup for those minority classes. Extensive experiments on three real-world datasets show that GraphMixup yields truly encouraging results for class-imbalanced node classification tasks.
Meta-reinforcement learning typically requires orders of magnitude more samples than single task reinforcement learning methods. This is because meta-training needs to deal with more diverse distributions and train extra components such as context en
Class imbalance in a dataset is a major problem for classifiers that results in poor prediction with a high true positive rate (TPR) but a low true negative rate (TNR) for a majority positive training dataset. Generally, the pre-processing technique
Semi-Supervised Learning (SSL) has achieved great success in overcoming the difficulties of labeling and making full use of unlabeled data. However, SSL has a limited assumption that the numbers of samples in different classes are balanced, and many
Deep learning on graphs has recently achieved remarkable success on a variety of tasks while such success relies heavily on the massive and carefully labeled data. However, precise annotations are generally very expensive and time-consuming. To addre
To take full advantage of fast-growing unlabeled networked data, this paper introduces a novel self-supervised strategy for graph representation learning by exploiting natural supervision provided by the data itself. Inspired by human social behavior