ترغب بنشر مسار تعليمي؟ اضغط هنا

GraphMixup: Improving Class-Imbalanced Node Classification on Graphs by Self-supervised Context Prediction

182   0   0.0 ( 0 )
 نشر من قبل Lirong Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent years have witnessed great success in handling node classification tasks with Graph Neural Networks (GNNs). However, most existing GNNs are based on the assumption that node samples for different classes are balanced, while for many real-world graphs, there exists the problem of class imbalance, i.e., some classes may have much fewer samples than others. In this case, directly training a GNN classifier with raw data would under-represent samples from those minority classes and result in sub-optimal performance. This paper presents GraphMixup, a novel mixup-based framework for improving class-imbalanced node classification on graphs. However, directly performing mixup in the input space or embedding space may produce out-of-domain samples due to the extreme sparsity of minority classes; hence we construct semantic relation spaces that allows the Feature Mixup to be performed at the semantic level. Moreover, we apply two context-based self-supervised techniques to capture both local and global information in the graph structure and then propose Edge Mixup specifically for graph data. Finally, we develop a emph{Reinforcement Mixup} mechanism to adaptively determine how many samples are to be generated by mixup for those minority classes. Extensive experiments on three real-world datasets show that GraphMixup yields truly encouraging results for class-imbalanced node classification tasks.



قيم البحث

اقرأ أيضاً

Meta-reinforcement learning typically requires orders of magnitude more samples than single task reinforcement learning methods. This is because meta-training needs to deal with more diverse distributions and train extra components such as context en coders. To address this, we propose a novel self-supervised learning task, which we named Trajectory Contrastive Learning (TCL), to improve meta-training. TCL adopts contrastive learning and trains a context encoder to predict whether two transition windows are sampled from the same trajectory. TCL leverages the natural hierarchical structure of context-based meta-RL and makes minimal assumptions, allowing it to be generally applicable to context-based meta-RL algorithms. It accelerates the training of context encoders and improves meta-training overall. Experiments show that TCL performs better or comparably than a strong meta-RL baseline in most of the environments on both meta-RL MuJoCo (5 of 6) and Meta-World benchmarks (44 out of 50).
Class imbalance in a dataset is a major problem for classifiers that results in poor prediction with a high true positive rate (TPR) but a low true negative rate (TNR) for a majority positive training dataset. Generally, the pre-processing technique of oversampling of minority class(es) are used to overcome this deficiency. Our focus is on using the hybridization of Generative Adversarial Network (GAN) and Synthetic Minority Over-Sampling Technique (SMOTE) to address class imbalanced problems. We propose a novel two-phase oversampling approach that has the synergy of SMOTE and GAN. The initial data of minority class(es) generated by SMOTE is further enhanced by GAN that produces better quality samples. We named it SMOTified-GAN as GAN works on pre-sampled minority data produced by SMOTE rather than randomly generating the samples itself. The experimental results prove the sample quality of minority class(es) has been improved in a variety of tested benchmark datasets. Its performance is improved by up to 9% from the next best algorithm tested on F1-score measurements. Its time complexity is also reasonable which is around $O(N^2d^2T)$ for a sequential algorithm.
Semi-Supervised Learning (SSL) has achieved great success in overcoming the difficulties of labeling and making full use of unlabeled data. However, SSL has a limited assumption that the numbers of samples in different classes are balanced, and many SSL algorithms show lower performance for the datasets with the imbalanced class distribution. In this paper, we introduce a task of class-imbalanced semi-supervised learning (CISSL), which refers to semi-supervised learning with class-imbalanced data. In doing so, we consider class imbalance in both labeled and unlabeled sets. First, we analyze existing SSL methods in imbalanced environments and examine how the class imbalance affects SSL methods. Then we propose Suppressed Consistency Loss (SCL), a regularization method robust to class imbalance. Our method shows better performance than the conventional methods in the CISSL environment. In particular, the more severe the class imbalance and the smaller the size of the labeled data, the better our method performs.
Deep learning on graphs has recently achieved remarkable success on a variety of tasks while such success relies heavily on the massive and carefully labeled data. However, precise annotations are generally very expensive and time-consuming. To addre ss this problem, self-supervised learning (SSL) is emerging as a new paradigm for extracting informative knowledge through well-designed pretext tasks without relying on manual labels. In this survey, we extend the concept of SSL, which first emerged in the fields of computer vision and natural language processing, to present a timely and comprehensive review of the existing SSL techniques for graph data. Specifically, we divide existing graph SSL methods into three categories: contrastive, generative, and predictive. More importantly, unlike many other surveys that only provide a high-level description of published research, we present an additional mathematical summary of the existing works in a unified framework. Furthermore, to facilitate methodological development and empirical comparisons, we also summarize the commonly used datasets, evaluation metrics, downstream tasks, and open-source implementations of various algorithms. Finally, we discuss the technical challenges and potential future directions for improving graph self-supervised learning.
To take full advantage of fast-growing unlabeled networked data, this paper introduces a novel self-supervised strategy for graph representation learning by exploiting natural supervision provided by the data itself. Inspired by human social behavior , we assume that the global context of each node is composed of all nodes in the graph since two arbitrary entities in a connected network could interact with each other via paths of varying length. Based on this, we investigate whether the global context can be a source of free and effective supervisory signals for learning useful node representations. Specifically, we randomly select pairs of nodes in a graph and train a well-designed neural net to predict the contextual position of one node relative to the other. Our underlying hypothesis is that the representations learned from such within-graph context would capture the global topology of the graph and finely characterize the similarity and differentiation between nodes, which is conducive to various downstream learning tasks. Extensive benchmark experiments including node classification, clustering, and link prediction demonstrate that our approach outperforms many state-of-the-art unsupervised methods and sometimes even exceeds the performance of supervised counterparts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا