ترغب بنشر مسار تعليمي؟ اضغط هنا

A Study of QCD Radiation in VBF Higgs Production with Vincia and Pythia

228   0   0.0 ( 0 )
 نشر من قبل Christian T Preuss
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss and illustrate the properties of several parton-shower models available in Pythia and Vincia, in the context of Higgs production via vector boson fusion (VBF). In particular, the distinctive colour topology of VBF processes allows to define observables sensitive to the coherent radiation pattern of additional jets. We study a set of such observables, using the Vincia sector-antenna shower as our main reference, and contrast it to Pythias transverse-momentum-ordered DGLAP shower as well as Pythias dipole-improved shower. We then investigate the robustness of these predictions as successive levels of higher-order perturbative matrix elements are incorporated, including next-to-leading-order matched and tree-level merged calculations, using Powheg Box and Sherpa respectively to generate the hard events.



قيم البحث

اقرأ أيضاً

We present a Monte Carlo implementation, within PYTHIA, of medium-induced gluon radiation in the final state branching process. Medium effects are introduced through an additive term in the splitting functions computed in the multiple-soft scattering approximation. The observable effects of this modification are studied for different quantities as fragmentation functions and the hump-backed plateau, and transverse momentum and angular distributions. The anticipated increase of intra-jet multiplicities, energy loss of the leading particle and jet broadening are observed as well as modifications of naive expectations based solely on analytical calculations. This shows the adequacy of a Monte Carlo simulator for jet analyses. Effects of hadronization are found to wash out medium effects in the soft region, while the main features remain. To show the performance of the implementation and the feasibility of our approach in realistic experimental situations we provide some examples: fragmentation functions, nuclear suppression factors, jet shapes and jet multiplicities. The package containing the modified routines is available for public use. This code, which is not an official PYTHIA release, is called Q-PYTHIA. We also include a short manual to perform the simulations of jet quenching.
We study QCD radiation for the WH and WZ production processes at the LHC. We identify the regions sensitive to anomalous couplings, by considering jet observables, computed at NLO QCD with the use of the Monte Carlo program VBFNLO. Based on these obs ervations, we propose the use of a dynamical jet veto. The dynamical jet veto avoids the problem of large logarithms depending on the veto scale, hence, providing more reliable predictions and simultaneously increasing the sensitivity to anomalous coupling searches, especially in the WZ production process.
For certain classes of Beyond the Standard Model theories, including composite Higgs models, the coupling of the Higgs to gauge bosons can be different from the Standard Model one. In this case, the multi-boson production via vector boson fusion (VBF ) can be hugely enhanced in comparison to the SM production one due to the lack of cancellation in longitudinal vector boson scattering. Among these processes, triple Higgs boson production in VBF plays a special role - its enhancement is especially spectacular due to the absence of background from transversely polarised vector bosons in the final state. While the rates from $ppto jjhhh$ production in vector boson fusion are too low at the LHC and even at future 33 TeV $pp$ colliders, we have found that the 100 TeV $pp$ future circular collider (FCC) has the unique opportunity to probe the $hVV$ coupling far beyond the LHC sensitivity. We have evaluated the $ppto jjhhh$ rates as a function of deviation from the $hVV$ coupling and have found that the background is much smaller than the signal for observable signal rates. We also found that the 100 TeV $pp$ FCC can probe the $hVV$ coupling up to the permille level, which is far beyond the LHC reach. These results highlight a special role of the $hhh$ VBF production and stress once more the importance of the 100 TeV $pp$ FCC.
We consider top quark pair production in association with a hard jet through next-to-leading order in perturbative QCD. Top quark decays are treated in the narrow width approximation and spin correlations are retained throughout the computation. We i nclude hard jet radiation by top quark decay products and explore their importance for basic kinematic distributions at the Tevatron and the LHC. Our results suggest that QCD corrections and jet radiation in decays can lead to significant changes in shapes of basic distributions and, therefore, need to be included for the description of ttbar+jet production. We compare the shape of the transverse momentum distribution of a top quark pair recently measured by the D0 collaboration with the result of our computation and find reasonable agreement.
We present results of the simulation of electroweak Higgs boson production at the Large Hadron Collider using the NLO multi-jet merging framework provided by the general purpose event generator Herwig 7. For the hard processes, we use the HJets libra ry for the computation of the $mathcal{O}(alpha^3 alpha_{s}^{n-2})$ matrix elements for $pp to h+n$ jet production at LO for $n=2,3,4$ and NLO for $n=2,3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا