ترغب بنشر مسار تعليمي؟ اضغط هنا

QCD radiation in WH and WZ production and anomalous coupling measurements

278   0   0.0 ( 0 )
 نشر من قبل Robin Roth
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study QCD radiation for the WH and WZ production processes at the LHC. We identify the regions sensitive to anomalous couplings, by considering jet observables, computed at NLO QCD with the use of the Monte Carlo program VBFNLO. Based on these observations, we propose the use of a dynamical jet veto. The dynamical jet veto avoids the problem of large logarithms depending on the veto scale, hence, providing more reliable predictions and simultaneously increasing the sensitivity to anomalous coupling searches, especially in the WZ production process.

قيم البحث

اقرأ أيضاً

We study WZ production with anomalous couplings at $bar{n}$NLO QCD using the LoopSim method in combination with the Monte Carlo program VBFNLO. Higher order corrections to WZ production are dominated by additional hard jet radiation. Those contributi ons are insensitive to anomalous couplings and should thus be removed in analyses. We do this using a dynamical jet veto based on the transverse energy of the QCD and EW final state particles. This removes jet dominated events without introducing problematic logs like a fixed $p_{text{T}}$ jet veto.
We investigate the role of anomalous gauge boson and fermion couplings on the production of $WZ$ and $W^+W^-$ pairs at the LHC to NLO QCD in the Standard Model effective field theory, including dimension-6 operators. Our results are implemented in a publicly available version of the POWHEG-BOX. We combine our $WZ$ results in the leptonic final state $e u mu^+mu^-$ with previous $W^+W^-$ results to demonstrate the numerical effects of NLO QCD corrections on the limits on effective couplings derived from ATLAS and CMS 8 and 13 TeV differential measurements. Our study demonstrates the importance of including NLO QCD SMEFT corrections in the $WZ$ analysis, while the effects on $WW$ production are smaller. We also show that the $mathcal{O}(1/Lambda^4)$ contributions dominate the analysis, where $Lambda$ is the high energy scale associated with the SMEFT.
We apply a method proposed by members of CTEQ Collaboration to estimate the uncertainty in associated $W$-Higgs boson production at Run II of the Tevatron due to our imprecise knowledge of parton distribution functions. We find that the PDF uncertain ties for the signal and background rates are of the order 3%. The PDF uncertainties for the important statistical quantities (significance of the Higgs boson discovery, accuracy of the measurement of the (WH) cross section) are smaller (1.5%) due to the strong correlation of the signal and background.
We study the effects of top-Higgs anomalous coupling in the production of a pair of Higgs boson via gluon fusion at the Large Hadron Collider (LHC). The introduction of anomalous $ttH$ coupling can alter the hadronic double Higgs boson cross section and can lead to characteristic changes in certain kinematic distributions. We perform a global analysis based on available LHC data on the Higgs to constrain the parameters of $ttH$ anomalous coupling. Possible overlap of the predictions due to anomalous $ttH$ coupling with those due to anomalous trilinear Higgs coupling is also studied. We briefly discuss the effect of the anomalous $ttH$ coupling on the $HZ$ production via gluon fusion which is one of the main backgrounds in the $HH to gammagamma b {bar b}$ channel.
Accessing the polarization of weak bosons provides an important probe for the mechanism of electroweak symmetry breaking. Relying on the double-pole approximation and on the separation of polarizations at the amplitude level, we study WZ production a t the LHC, with both bosons in a definite polarization mode, including NLO QCD effects. We compare results obtained defining the polarization vectors in two different frames. Integrated and differential cross-sections in a realistic fiducial region are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا