ﻻ يوجد ملخص باللغة العربية
In the last decade, motivated by the success of Deep Learning, the scientific community proposed several approaches to make the learning procedure of Neural Networks more effective. When focussing on the way in which the training data are provided to the learning machine, we can distinguish between the classic random selection of stochastic gradient-based optimization and more involved techniques that devise curricula to organize data, and progressively increase the complexity of the training set. In this paper, we propose a novel training procedure named Friendly Training that, differently from the aforementioned approaches, involves altering the training examples in order to help the model to better fulfil its learning criterion. The model is allowed to simplify those examples that are too hard to be classified at a certain stage of the training procedure. The data transformation is controlled by a developmental plan that progressively reduces its impact during training, until it completely vanishes. In a sense, this is the opposite of what is commonly done in order to increase robustness against adversarial examples, i.e., Adversarial Training. Experiments on multiple datasets are provided, showing that Friendly Training yields improvements with respect to informed data sub-selection routines and random selection, especially in deep convolutional architectures. Results suggest that adapting the input data is a feasible way to stabilize learning and improve the generalization skills of the network.
Changes in neural architectures have fostered significant breakthroughs in language modeling and computer vision. Unfortunately, novel architectures often require re-thinking the choice of hyperparameters (e.g., learning rate, warmup schedule, and mo
Todays deep learning models are primarily trained on CPUs and GPUs. Although these models tend to have low error, they consume high power and utilize large amount of memory owing to double precision floating point learning parameters. Beyond the Moor
We propose a novel regularization algorithm to train deep neural networks, in which data at training time is severely biased. Since a neural network efficiently learns data distribution, a network is likely to learn the bias information to categorize
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment, typically leading to arbitrary deductions and poorly-informed decisions. In principle, detection of and adaptation to OOD scenes can mitigate their
We investigate the problem of machine learning with mislabeled training data. We try to make the effects of mislabeled training better understood through analysis of the basic model and equations that characterize the problem. This includes results a