ﻻ يوجد ملخص باللغة العربية
The electric dipole moment (EDM) of electron is studied in the supersymmetric $rm A_4$ modular invariant theory of flavors with CP invariance. The CP symmetry of the lepton sector is broken by fixing the modulus $tau$. Lepton mass matrices are completely consistent with observed lepton masses and mixing angles in our model. In this framework, a fixed $tau$ also causes the CP violation in the soft SUSY breaking terms. The elecrton EDM arises from the CP non-conserved soft SUSY breaking terms. The experimental upper bound of the electron EDM excludes the SUSY mass scale below $2-6$ TeV for five cases of the lepton mass matrices. In order to see the effect of CP phase of the modulus $tau$, we examine the correlation between the electron EDM and the decay rate of the $mu rightarrow e gamma$ decay, which is also predicted by the soft SUSY breaking terms. The correlations are clearly predicted in contrast to models of the conventional flavor symmetry. The SUSY mass scale will be constrained by the future sensitivity of the electron EDM, $|d_e/e| simeq 10^{-30}$. Indeed, it could probe the SUSY mass range of $10-20$ TeV in our model. Thus, the electron EDM provides a severe test of the CP violation via the modulus $tau$ in the supersymmetric modular invariant theory of flavors.
We study the spontaneous $CP$ violation through the stabilization of the modulus $tau$ in modular invariant flavor models. The $CP$-invaraiant potentential has the minimum only at ${rm Re}[tau] = 0$ or 1/2. From this prediction, we study $CP$ violati
We study the modulus stabilization in an $A_4$ model whose $A_4$ flavor symmetry is originated from the $S_4$ modular symmetry. We can stabilize the modulus so that the $A_4$ invariant superpotential leads to the realistic lepton masses and mixing an
We present a flavor model with the $S_3$ modular invariance in the framework of SU(5) GUT. The $S_3$ modular forms of weights $2$ and $4$ give the quark and lepton mass matrices with a common complex parameter, the modulus $tau$. The GUT relation of
We study nuclear electric dipole moments induced by $Delta F=1$ effective operators in the Standard Model Effective Field Theory. Such contributions arise through renormalization group evolutions and matching conditions at the electroweak symmetry br
The idea of modular invariance provides a novel explanation of flavour mixing. Within the context of finite modular symmetries $Gamma_N$ and for a given element $gamma in Gamma_N$, we present an algorithm for finding stabilisers (specific values for