ﻻ يوجد ملخص باللغة العربية
The idea of modular invariance provides a novel explanation of flavour mixing. Within the context of finite modular symmetries $Gamma_N$ and for a given element $gamma in Gamma_N$, we present an algorithm for finding stabilisers (specific values for moduli fields $tau_gamma$ which remain unchanged under the action associated to $gamma$). We then employ this algorithm to find all stabilisers for each element of finite modular groups for $N=2$ to $5$, namely, $Gamma_2simeq S_3$, $Gamma_3simeq A_4$, $Gamma_4simeq S_4$ and $Gamma_5simeq A_5$. These stabilisers then leave preserved a specific cyclic subgroup of $Gamma_N$. This is of interest to build models of fermionic mixing where each fermionic sector preserves a separate residual symmetry.
We study the spontaneous $CP$ violation through the stabilization of the modulus $tau$ in modular invariant flavor models. The $CP$-invaraiant potentential has the minimum only at ${rm Re}[tau] = 0$ or 1/2. From this prediction, we study $CP$ violati
Sum rules in the lepton sector provide an extremely valuable tool to classify flavour models in terms of relations between neutrino masses and mixing parameters testable in a plethora of experiments. In this manuscript we identify new leptonic sum ru
We develop a general formalism for multiple moduli and their associated modular symmetries. We apply this formalism to an example based on three moduli with finite modular symmetries $S_4^A$, $S_4^B$ and $S_4^C$, associated with two right-handed neut
We analyse how $U(3)^5$ and $U(2)^5$ flavour symmetries act on the Standard Model Effective Field Theory, providing an organising principle to classify the large number of dimension-six operators involving fermion fields. A detailed counting of such
We consider for the first time level 7 modular invariant flavour models where the lepton mixing originates from the breaking of modular symmetry and couplings responsible for lepton masses are modular forms. The latter are decomposed into irreducible