ترغب بنشر مسار تعليمي؟ اضغط هنا

Post-Hartree-Fock method in Quantum Chemistry for Quantum Computer

117   0   0.0 ( 0 )
 نشر من قبل Yutaka Shikano
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum computational chemistry is a potential application of quantum computers that is expected to effectively solve several quantum-chemistry problems, particularly the electronic structure problem. Quantum computational chemistry can be compared to the conventional computational devices. This review comprehensively investigates the applications and overview of quantum computational chemistry, including a review of the Hartree-Fock method for quantum information scientists. Quantum algorithms, quantum phase estimation, and variational quantum eigensolver, have been applied to the post-Hartree-Fock method.

قيم البحث

اقرأ أيضاً

As the search continues for useful applications of noisy intermediate scale quantum devices, variational simulations of fermionic systems remain one of the most promising directions. Here, we perform a series of quantum simulations of chemistry the l argest of which involved a dozen qubits, 78 two-qubit gates, and 114 one-qubit gates. We model the binding energy of ${rm H}_6$, ${rm H}_8$, ${rm H}_{10}$ and ${rm H}_{12}$ chains as well as the isomerization of diazene. We also demonstrate error-mitigation strategies based on $N$-representability which dramatically improve the effective fidelity of our experiments. Our parameterized ansatz circuits realize the Givens rotation approach to non-interacting fermion evolution, which we variationally optimize to prepare the Hartree-Fock wavefunction. This ubiquitous algorithmic primitive corresponds to a rotation of the orbital basis and is required by many proposals for correlated simulations of molecules and Hubbard models. Because non-interacting fermion evolutions are classically tractable to simulate, yet still generate highly entangled states over the computational basis, we use these experiments to benchmark the performance of our hardware while establishing a foundation for scaling up more complex correlated quantum simulations of chemistry.
As we begin to reach the limits of classical computing, quantum computing has emerged as a technology that has captured the imagination of the scientific world. While for many years, the ability to execute quantum algorithms was only a theoretical po ssibility, recent advances in hardware mean that quantum computing devices now exist that can carry out quantum computation on a limited scale. Thus it is now a real possibility, and of central importance at this time, to assess the potential impact of quantum computers on real problems of interest. One of the earliest and most compelling applications for quantum computers is Feynmans idea of simulating quantum systems with many degrees of freedom. Such systems are found across chemistry, physics, and materials science. The particular way in which quantum computing extends classical computing means that one cannot expect arbitrary simulations to be sped up by a quantum computer, thus one must carefully identify areas where quantum advantage may be achieved. In this review, we briefly describe central problems in chemistry and materials science, in areas of electronic structure, quantum statistical mechanics, and quantum dynamics, that are of potential interest for solution on a quantum computer. We then take a detailed snapshot of current progress in quantum algorithms for ground-state, dynamics, and thermal state simulation, and analyze their strengths and weaknesses for future developments.
Quantum computing, an innovative computing system carrying prominent processing rate, is meant to be the solutions to problems in many fields. Among these realms, the most intuitive application is to help chemical researchers correctly de-scribe stro ng correlation and complex systems, which are the great challenge in current chemistry simulation. In this paper, we will present a standalone quantum simulation tool for chemistry, ChemiQ, which is designed to assist people carry out chemical research or molecular calculation on real or virtual quantum computers. Under the idea of modular programming in C++ language, the software is designed as a full-stack tool without third-party physics or chemistry application packages. It provides services as follow: visually construct molecular structure, quickly simulate ground-state energy, scan molecular potential energy curve by distance or angle, study chemical reaction, and return calculation results graphically after analysis.
Spectroscopy is an indispensable tool in understanding the structures and dynamics of molecular systems. However computational modelling of spectroscopy is challenging due to the exponential scaling of computational complexity with system sizes unles s drastic approximations are made. Quantum computer could potentially overcome these classically intractable computational tasks, but existing approaches using quantum computers to simulate spectroscopy can only handle isolated and static molecules. In this work we develop a workflow that combines multi-scale modeling and time-dependent variational quantum algorithm to compute the linear spectroscopy of systems interacting with their condensed-phase environment via the relevant time correlation function. We demonstrate the feasibility of our approach by numerically simulating the UV-Vis absorption spectra of organic semiconductors. We show that our dynamical approach captures several spectral features that are otherwise overlooked by static methods. Our method can be directly used for other linear condensed-phase spectroscopy and could potentially be extended to nonlinear multi-dimensional spectroscopy.
The Hartree-Fock problem provides the conceptual and mathematical underpinning of a large portion of quantum chemistry. As efforts in quantum technology aim to enhance computational chemistry algorithms, the fundamental Hartree-Fock problem is a natu ral target. While quantum computers and quantum simulation offer many prospects for the future of modern chemistry, the Hartree-Fock problem is not a likely candidate. We highlight this fact from a number of perspectives including computational complexity, practical examples, and the full characterization of the energy landscapes for simple systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا