ﻻ يوجد ملخص باللغة العربية
Recently, the two-dimensional (2D) materials have become potential candidates for various technological applications in spintronics and optoelectronics soon after the discovery of graphene from the mechanical exfoliation of graphite. In the present study, the structural, electronic, and phase stability of layered quasi-2D ZnSb compounds have been tuned using the first principle calculations based on density functional theory (DFT). We invoked the Perdew-Burke-Ernzerhof (PBE) functional and the projected augmented wave (PAW) method during all the calculations. Based on our numerical results, the novel tetragonal phase of 2D-ZnSb is the most stable phase among the quasi-2D structures. We reported the pressure-induced phase transition between orthorhombic 3D-ZnSb to tetragonal 2D-ZnSb at 12.48 GPa/atom. The projected density of states indicates the strong p-d hybridization between Sb-5p and Zn-3d states confirming the nature of strong covalent bonding between them. We predicted the possibility of the monolayer in tetragonal 2D-ZnSb and orthorhombic 3D-ZnSb according to the exfoliation energy criterion. The electronic band structures suggest the metallic characteristics of all the quasi-2D structures. In addition, the monolayer of 3D-ZnSb has been predicted to be dynamically stable as manifested in phonon dispersion bands. Surprisingly, the semiconducting bandgap nature of orthorhombic 3D-ZnSb changes from indirect and narrow to direct and sizable while going from 3D bulk to 2D monolayer. Further, we estimated the value of work functions for the surface of t-ZnSb (quasi-2D) and o-ZnSb (3D) as 4.61 eV and 4.04 eV respectively. Such materials can find niche applications in next-generation electronic devices utilizing 2D heterostructures.
Structural, electronic, vibrational and dielectric properties of LaBGeO$_5$ with the stillwellite structure are determined based on textit{ab initio} density functional theory. The theoretically relaxed structure is found to agree well with the exist
In this work, we have presented a first principle simulation study on the electronic properties of MoS2/MX2/MoS2 (M=Mo or W; X=S or Se) trilayer heterostrcuture. We have investigated the effect of stacking configuration, bi-axial compressive and tens
Based on the first-principles calculations, we have investigated the geometry, binding properties, density of states and band structures of the novel superconductor LaFe1-xCoxAsO and its parent compounds with the ZrCuSiAs structure. We demonstrate th
Lithium metasilicate (Li2SiO3) has attracted considerable interest as a promising electrolyte material for potential use in lithium batteries. However, its electronic properties are still not thoroughly understood. In this work, density functional th
The electronic structures of CeRhSn and CeRuSn are self-consistently calculated within density functional theory using the local spin density approximation for exchange and correlation. In agreement with experimental findings, the analyses of the ele