ترغب بنشر مسار تعليمي؟ اضغط هنا

First principles investigations of the electronic, magnetic and chemical bonding properties of CeTSn (T=Rh,Ru)

181   0   0.0 ( 0 )
 نشر من قبل Volker Eyert
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structures of CeRhSn and CeRuSn are self-consistently calculated within density functional theory using the local spin density approximation for exchange and correlation. In agreement with experimental findings, the analyses of the electronic structures and of the chemical bonding properties point to the absence of magnetization within the mixed valent Rh based system while a finite magnetic moment is observed for trivalent cerium within the Ru-based stannide, which contains both trivalent and intermediate valent Ce.



قيم البحث

اقرأ أيضاً

The complicated electronic, magnetic, and colossal magnetoresistant (CMR) properties of Sr and Ca doped lanthanum manganites can be understood by spin-polarized first-principles calculations. The electronic properties can be attributed to a detailed balancing between Sr and Ca induced metal-like O 2p and majority-spin (majority-spin) Mn eg delocalized states and the insulator-like minority-spin (minority-spin) Mn t2g band near the Fermi level (EF). The magnetic properties can be attributed to a detailed balancing between O mediated antiferromagnetic superexchange and delocalized majority-spin Mn eg-state mediated ferromagnetic spin-spin couplings. While CMR can be attributed to the lining up of magnetic domains trigged by the applied magnetic field, which suppresses the trapping ability of the empty Mn t2g states that resists the motion of conducting Mn majority-spin eg electrons.
Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies us ing density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp$^3$-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the $d$ states of the metal atom and the defect levels associated with an unreconstructed D$_{3h}$ carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 $mu_B$ is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.
The structural, electronic, and magnetic properties of bulk GdCu (CsCl-type) are investigated using spin density functional theory, where highly localized $4f$ orbitals are treated within LDA+$U$ and GGA+$U$ methods. The calculated magnetic ground st ate of GdCu using collinear as well as spin spiral calculations exhibits a C-type antiferromagnetic configuration representing a spin spiral propagation vector $mathbf{Q}=frac{2pi}{a}(frac{1}{2},frac{1}{2},0)$. The parameters of the effective Heisenberg Hamiltonian are evaluated from a self-consistent electronic structure and are used to determine the magnetic transition temperature. The estimated N{e}el temperature of the cubic GdCu using GGA+$U$ and LDA+$U$ density functionals within the mean field and random phase approximations are in good agreement with the experimentally measured values. In particular, the theoretical understanding of the experimentally observed core Gd $4f$ levels shifting in photoemission spectroscopy experiments is investigated in detail. By employing the self-consistent constrained random-phase approximation we determined the strength of the effective Coulomb interaction (Hubbard $U$) between localized $4f$ electrons. We find that, the shift of Gd-$4f$ states in GdCu with respect to bulk Gd within DFT+$U$ is sensitive to choice of lattice parameter. The calculations for $4f$-level shifts using DFT+$U$ methods as well as Hubbard-1 approximation are not consistent with the experimental findings.
The recent discovery of topological Kondo insulating behaviour in strongly correlated electron systems has generated considerable interest in Kondo insulators both experimentally and theoretically. The Kondo semiconductors CeT2Al10 (T=Fe, Ru and Os) possessing a c-f hybridization gap have received considerable attention recently because of the unexpected high magnetic ordering temperature of CeRu2Al10 (TN=27 K) and CeOs2Al10 (TN=28.5 K) and the Kondo insulating behaviour observed in the valence fluctuating compound CeFe2Al10 with a paramagnetic ground state down to 50 mK. We are investigating this family of compounds, both in polycrystalline and single crystal form, using inelastic neutron scattering to understand the role of anisotropic c-f hybridization on the spin gap formation as well as on their magnetic properties. We have observed a clear sign of a spin gap in all three compounds from our polycrystalline study as well as the existence of a spin gap above the magnetic ordering temperature in T=Ru and Os. Our inelastic neutron scattering studies on single crystals of CeRu2Al10 and CeOs2Al10 revealed dispersive gapped spin wave excitations below TN. Analysis of the spin wave spectrum reveals the presence of strong anisotropic exchange, along the c-axis (or z-axis) stronger than in the ab-plane. These anisotropic exchange interactions force the magnetic moment to align along the c-axis, competing with the single ion crystal field anisotropy, which prefers moments along the a-axis. In the paramagnetic state (below 50 K) of the Kondo insulator CeFe2Al10, we have also observed dispersive gapped magnetic excitations which transform into quasi-elastic scattering on heating to 100 K. We will discuss the origin of the anisotropic hybridization gap in CeFe2Al10 based on theoretical models of heavy-fermion semiconductors.
We have studied NpPdSn by means of the heat capacity, electrical resistivity, Seebeck and Hall effect, $^{237}$Np M{o}ssbauer spectroscopy, and neutron diffraction measurements in the temperature range 2-300 K and under magnetic fields up to 14 T. Np PdSn orders antiferromagnetically below the Neel temperature $T_N$ = 19 K and shows localized magnetism of Np$^{3+}$ ion with a a doubly degenerate ground state. In the magnetic state the electrical resistivity and heat capacity are characterized by electron-magnon scattering with spin-waves spectrum typical of anisotropic antiferromagnets. An enhanced Sommerfeld coefficient and typical behavior of magnetorestistivity, Seebeck and Hall coefficients are all characteristic of systems with strong electronic correlations. The low temperature antiferromagnetic state of NpPdSn is verified by neutron diffraction and $^{237}$Np M{o}ssbauer spectroscopy and possible magnetic structures are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا