ﻻ يوجد ملخص باللغة العربية
Multiple signal classification (MUSIC) has been widely applied in multiple-input multiple-output (MIMO) receivers for direction-of-arrival (DOA) estimation. To reduce the cost of radio frequency (RF) chains operating at millimeter-wave bands, hybrid analog-digital structure has been adopted in massive MIMO transceivers. In this situation, the received signals at the antennas are unavailable to the digital receiver, and as a consequence, the spatial covariance matrix (SCM), which is essential in MUSIC algorithm, cannot be obtained using traditional sample average approach. Based on our previous work, we propose a novel algorithm for SCM reconstruction in hybrid massive MIMO systems with multiple RF chains. By switching the analog beamformers to a group of predetermined DOAs, SCM can be reconstructed through the solutions of a set of linear equations. In addition, based on insightful analysis on that linear equations, a low-complexity algorithm, as well as a careful selection of the predetermined DOAs, will be also presented in this paper. Simulation results show that the proposed algorithms can reconstruct the SCM accurately so that MUSIC algorithm can be well used for DOA estimation in hybrid massive MIMO systems with multiple RF chains.
Due to the power consumption and high circuit cost in antenna arrays, the practical application of massive multipleinput multiple-output (MIMO) in the sixth generation (6G) and future wireless networks is still challenging. Employing lowresolution an
DOA estimation for massive multiple-input multiple-output (MIMO) system can provide ultra-high-resolution angle estimation. However, due to the high computational complexity and cost of all digital MIMO systems, a hybrid analog digital (HAD) structur
Terahertz (THz) communication is widely considered as a key enabler for future 6G wireless systems. However, THz links are subject to high propagation losses and inter-symbol interference due to the frequency selectivity of the channel. Massive multi
We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The cova
We consider a cell-free hybrid massive multiple-input multiple-output (MIMO) system with $K$ users and $M$ access points (APs), each with $N_a$ antennas and $N_r< N_a$ radio frequency (RF) chains. When $Kll M{N_a}$, efficient uplink channel estimatio