ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Power Multi-Camera Object Re-Identification using Hierarchical Neural Networks

92   0   0.0 ( 0 )
 نشر من قبل Abhinav Goel
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-power computer vision on embedded devices has many applications. This paper describes a low-power technique for the object re-identification (reID) problem: matching a query image against a gallery of previously seen images. State-of-the-art techniques rely on large, computationally-intensive Deep Neural Networks (DNNs). We propose a novel hierarchical DNN architecture that uses attribute labels in the training dataset to perform efficient object reID. At each node in the hierarchy, a small DNN identifies a different attribute of the query image. The small DNN at each leaf node is specialized to re-identify a subset of the gallery: only the images with the attributes identified along the path from the root to a leaf. Thus, a query image is re-identified accurately after processing with a few small DNNs. We compare our method with state-of-the-art object reID techniques. With a 4% loss in accuracy, our approach realizes significant resource savings: 74% less memory, 72% fewer operations, and 67% lower query latency, yielding 65% less energy consumption.



قيم البحث

اقرأ أيضاً

Deep Neural Networks (DNNs) can achieve state-of-the-art accuracy in many computer vision tasks, such as object counting. Object counting takes two inputs: an image and an object query and reports the number of occurrences of the queried object. To a chieve high accuracy on such tasks, DNNs require billions of operations, making them difficult to deploy on resource-constrained, low-power devices. Prior work shows that a significant number of DNN operations are redundant and can be eliminated without affecting the accuracy. To reduce these redundancies, we propose a hierarchical DNN architecture for object counting. This architecture uses a Region Proposal Network (RPN) to propose regions-of-interest (RoIs) that may contain the queried objects. A hierarchical classifier then efficiently finds the RoIs that actually contain the queried objects. The hierarchy contains groups of visually similar object categories. Small DNNs are used at each node of the hierarchy to classify between these groups. The RoIs are incrementally processed by the hierarchical classifier. If the object in an RoI is in the same group as the queried object, then the next DNN in the hierarchy processes the RoI further; otherwise, the RoI is discarded. By using a few small DNNs to process each image, this method reduces the memory requirement, inference time, energy consumption, and number of operations with negligible accuracy loss when compared with the existing object counters.
194 - Yan Xu , Yu-Jhe Li , Xinshuo Weng 2021
We address the problem of estimating the 3D pose of a network of cameras for large-environment wide-baseline scenarios, e.g., cameras for construction sites, sports stadiums, and public spaces. This task is challenging since detecting and matching th e same 3D keypoint observed from two very different camera views is difficult, making standard structure-from-motion (SfM) pipelines inapplicable. In such circumstances, treating people in the scene as keypoints and associating them across different camera views can be an alternative method for obtaining correspondences. Based on this intuition, we propose a method that uses ideas from person re-identification (re-ID) for wide-baseline camera calibration. Our method first employs a re-ID method to associate human bounding boxes across cameras, then converts bounding box correspondences to point correspondences, and finally solves for camera pose using multi-view geometry and bundle adjustment. Since our method does not require specialized calibration targets except for visible people, it applies to situations where frequent calibration updates are required. We perform extensive experiments on datasets captured from scenes of different sizes, camera settings (indoor and outdoor), and human activities (walking, playing basketball, construction). Experiment results show that our method achieves similar performance to standard SfM methods relying on manually labeled point correspondences.
Visual re-localization means using a single image as input to estimate the cameras location and orientation relative to a pre-recorded environment. The highest-scoring methods are structure based, and need the query cameras intrinsics as an input to the model, with careful geometric optimization. When intrinsics are absent, methods vie for accuracy by making various other assumptions. This yields fairly good localization scores, but the models are narrow in some way, eg., requiring costly test-time computations, or depth sensors, or multiple query frames. In contrast, our proposed method makes few special assumptions, and is fairly lightweight in training and testing. Our pose regression network learns from only relative poses of training scenes. For inference, it builds a graph connecting the query image to training counterparts and uses a graph neural network (GNN) with image representations on nodes and image-pair representations on edges. By efficiently passing messages between them, both representation types are refined to produce a consistent camera pose estimate. We validate the effectiveness of our approach on both standard indoor (7-Scenes) and outdoor (Cambridge Landmarks) camera re-localization benchmarks. Our relative pose regression method matches the accuracy of absolute pose regression networks, while retaining the relative-pose models test-time speed and ability to generalize to non-training scenes.
The task of multiple people tracking in monocular videos is challenging because of the numerous difficulties involved: occlusions, varying environments, crowded scenes, camera parameters and motion. In the tracking-by-detection paradigm, most approac hes adopt person re-identification techniques based on computing the pairwise similarity between detections. However, these techniques are less effective in handling long-term occlusions. By contrast, tracklet (a sequence of detections) re-identification can improve association accuracy since tracklets offer a richer set of visual appearance and spatio-temporal cues. In this paper, we propose a tracking framework that employs a hierarchical clustering mechanism for merging tracklets. To this end, tracklet re-identification is performed by utilizing a novel multi-stage deep network that can jointly reason about the visual appearance and spatio-temporal properties of a pair of tracklets, thereby providing a robust measure of affinity. Experimental results on the challenging MOT16 and MOT17 benchmarks show that our method significantly outperforms state-of-the-arts.
Existing person re-identification (re-id) methods mostly exploit a large set of cross-camera identity labelled training data. This requires a tedious data collection and annotation process, leading to poor scalability in practical re-id applications. On the other hand unsupervised re-id methods do not need identity label information, but they usually suffer from much inferior and insufficient model performance. To overcome these fundamental limitations, we propose a novel person re-identification paradigm based on an idea of independent per-camera identity annotation. This eliminates the most time-consuming and tedious inter-camera identity labelling process, significantly reducing the amount of human annotation efforts. Consequently, it gives rise to a more scalable and more feasible setting, which we call Intra-Camera Supervised (ICS) person re-id, for which we formulate a Multi-tAsk mulTi-labEl (MATE) deep learning method. Specifically, MATE is designed for self-discovering the cross-camera identity correspondence in a per-camera multi-task inference framework. Extensive experiments demonstrate the cost-effectiveness superiority of our method over the alternative approaches on three large person re-id datasets. For example, MATE yields 88.7% rank-1 score on Market-1501 in the proposed ICS person re-id setting, significantly outperforming unsupervised learning models and closely approaching conventional fully supervised learning competitors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا