ﻻ يوجد ملخص باللغة العربية
We address the problem of estimating the 3D pose of a network of cameras for large-environment wide-baseline scenarios, e.g., cameras for construction sites, sports stadiums, and public spaces. This task is challenging since detecting and matching the same 3D keypoint observed from two very different camera views is difficult, making standard structure-from-motion (SfM) pipelines inapplicable. In such circumstances, treating people in the scene as keypoints and associating them across different camera views can be an alternative method for obtaining correspondences. Based on this intuition, we propose a method that uses ideas from person re-identification (re-ID) for wide-baseline camera calibration. Our method first employs a re-ID method to associate human bounding boxes across cameras, then converts bounding box correspondences to point correspondences, and finally solves for camera pose using multi-view geometry and bundle adjustment. Since our method does not require specialized calibration targets except for visible people, it applies to situations where frequent calibration updates are required. We perform extensive experiments on datasets captured from scenes of different sizes, camera settings (indoor and outdoor), and human activities (walking, playing basketball, construction). Experiment results show that our method achieves similar performance to standard SfM methods relying on manually labeled point correspondences.
Existing person re-identification (re-id) methods mostly exploit a large set of cross-camera identity labelled training data. This requires a tedious data collection and annotation process, leading to poor scalability in practical re-id applications.
Person re-identification (ReID) aims at finding the same person in different cameras. Training such systems usually requires a large amount of cross-camera pedestrians to be annotated from surveillance videos, which is labor-consuming especially when
Intra-camera supervision (ICS) for person re-identification (Re-ID) assumes that identity labels are independently annotated within each camera view and no inter-camera identity association is labeled. It is a new setting proposed recently to reduce
This paper tackles the purely unsupervised person re-identification (Re-ID) problem that requires no annotations. Some previous methods adopt clustering techniques to generate pseudo labels and use the produced labels to train Re-ID models progressiv
The challenge of person re-identification (re-id) is to match individual images of the same person captured by different non-overlapping camera views against significant and unknown cross-view feature distortion. While a large number of distance metr