ترغب بنشر مسار تعليمي؟ اضغط هنا

Accelerated Policy Evaluation: Learning Adversarial Environments with Adaptive Importance Sampling

137   0   0.0 ( 0 )
 نشر من قبل Mengdi Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The evaluation of rare but high-stakes events remains one of the main difficulties in obtaining reliable policies from intelligent agents, especially in large or continuous state/action spaces where limited scalability enforces the use of a prohibitively large number of testing iterations. On the other hand, a biased or inaccurate policy evaluation in a safety-critical system could potentially cause unexpected catastrophic failures during deployment. In this paper, we propose the Accelerated Policy Evaluation (APE) method, which simultaneously uncovers rare events and estimates the rare event probability in Markov decision processes. The APE method treats the environment nature as an adversarial agent and learns towards, through adaptive importance sampling, the zero-variance sampling distribution for the policy evaluation. Moreover, APE is scalable to large discrete or continuous spaces by incorporating function approximators. We investigate the convergence properties of proposed algorithms under suitable regularity conditions. Our empirical studies show that APE estimates rare event probability with a smaller variance while only using orders of magnitude fewer samples compared to baseline methods in both multi-agent and single-agent environments.


قيم البحث

اقرأ أيضاً

The principal contribution of this paper is a conceptual framework for off-policy reinforcement learning, based on conditional expectations of importance sampling ratios. This framework yields new perspectives and understanding of existing off-policy algorithms, and reveals a broad space of unexplored algorithms. We theoretically analyse this space, and concretely investigate several algorithms that arise from this framework.
We consider the core reinforcement-learning problem of on-policy value function approximation from a batch of trajectory data, and focus on various issues of Temporal Difference (TD) learning and Monte Carlo (MC) policy evaluation. The two methods ar e known to achieve complementary bias-variance trade-off properties, with TD tending to achieve lower variance but potentially higher bias. In this paper, we argue that the larger bias of TD can be a result of the amplification of local approximation errors. We address this by proposing an algorithm that adaptively switches between TD and MC in each state, thus mitigating the propagation of errors. Our method is based on learned confidence intervals that detect biases of TD estimates. We demonstrate in a variety of policy evaluation tasks that this simple adaptive algorithm performs competitively with the best approach in hindsight, suggesting that learned confidence intervals are a powerful technique for adapting policy evaluation to use TD or MC returns in a data-driven way.
This work studies the problem of batch off-policy evaluation for Reinforcement Learning in partially observable environments. Off-policy evaluation under partial observability is inherently prone to bias, with risk of arbitrarily large errors. We def ine the problem of off-policy evaluation for Partially Observable Markov Decision Processes (POMDPs) and establish what we believe is the first off-policy evaluation result for POMDPs. In addition, we formulate a model in which observed and unobserved variables are decoupled into two dynamic processes, called a Decoupled POMDP. We show how off-policy evaluation can be performed under this new model, mitigating estimation errors inherent to general POMDPs. We demonstrate the pitfalls of off-policy evaluation in POMDPs using a well-known off-policy method, Importance Sampling, and compare it with our result on synthetic medical data.
We study the problem of learning exploration-exploitation strategies that effectively adapt to dynamic environments, where the task may change over time. While RNN-based policies could in principle represent such strategies, in practice their trainin g time is prohibitive and the learning process often converges to poor solutions. In this paper, we consider the case where the agent has access to a description of the task (e.g., a task id or task parameters) at training time, but not at test time. We propose a novel algorithm that regularizes the training of an RNN-based policy using informed policies trained to maximize the reward in each task. This dramatically reduces the sample complexity of training RNN-based policies, without losing their representational power. As a result, our method learns exploration strategies that efficiently balance between gathering information about the unknown and changing task and maximizing the reward over time. We test the performance of our algorithm in a variety of environments where tasks may vary within each episode.
Probabilistic software analysis aims at quantifying the probability of a target event occurring during the execution of a program processing uncertain incoming data or written itself using probabilistic programming constructs. Recent techniques combi ne symbolic execution with model counting or solution space quantification methods to obtain accurate estimates of the occurrence probability of rare target events, such as failures in a mission-critical system. However, they face several scalability and applicability limitations when analyzing software processing with high-dimensional and correlated multivariate input distributions. In this paper, we present SYMbolic Parallel Adaptive Importance Sampling (SYMPAIS), a new inference method tailored to analyze path conditions generated from the symbolic execution of programs with high-dimensional, correlated input distributions. SYMPAIS combines results from importance sampling and constraint solving to produce accurate estimates of the satisfaction probability for a broad class of constraints that cannot be analyzed by current solution space quantification methods. We demonstrate SYMPAISs generality and performance compared with state-of-the-art alternatives on a set of problems from different application domains.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا