ﻻ يوجد ملخص باللغة العربية
Gauge invariance, a core principle in electrodynamics, has two separate meanings, only one of which is robust. The reliable concept treats the photon as the gauge field for electrodynamics. It is based on symmetries of the Lagrangian, and requires no mention of electric or magnetic fields. The other depends directly on the electric and magnetic fields, and how they can be represented by potential functions that are not unique. The first gauge concept has been fruitful, whereas the second has the defect that there exist gauge transformations from physical to unphysical states. The fields are unchanged by the gauge transformation, so that potentials are the necessary guides to correctness.
In this paper, a formulation, which is completely established on a quantum ground, is presented for basic contents of quantum electrodynamics (QED). This is done by moving away, from the fundamental level, the assumption that the spin space of bare p
Multiple bases are presented for the conclusion that potentials are fundamental in electrodynamics, with electric and magnetic fields as quantities auxiliary to the scalar and vector potentials -- opposite to the conventional ordering. One foundation
Conservation principles establish the primacy of potentials over fields in electrodynamics, both classical and quantum. The contrary conclusion that fields are primary is based on the Newtonian concept that forces completely determine dynamics, and e
Source-free so-called ModMax theories of nonlinear electrodynamics in the four dimensional Minkowski spacetime vacuum are the only possible continuous deformations -- and as a function of a single real and positive parameter -- of source-free Maxwell
The ether concept -- abandoned for a long time but reinstated by Dirac in 1951-1953 -- has in recent years emerged into a fashionable subject in theoretical physics, now usually with the name of the Einstein-Dirac ether. It means that one special ine