ﻻ يوجد ملخص باللغة العربية
The ether concept -- abandoned for a long time but reinstated by Dirac in 1951-1953 -- has in recent years emerged into a fashionable subject in theoretical physics, now usually with the name of the Einstein-Dirac ether. It means that one special inertial frame is singled out, as the rest frame. What is emphasized in the present note, is that the idea is a natural example of the covariant theory of quantum electrodynamics in media if the refractive index is set equal to unity. A treatise on this case of quantum electrodynamics was given by the present author back in 1971, published then only within a preprint series. The present version is a brief summary of that formalism, with a link to the original paper. We think it is one of the first treatises on modern ether theory.
In this paper, a formulation, which is completely established on a quantum ground, is presented for basic contents of quantum electrodynamics (QED). This is done by moving away, from the fundamental level, the assumption that the spin space of bare p
Source-free so-called ModMax theories of nonlinear electrodynamics in the four dimensional Minkowski spacetime vacuum are the only possible continuous deformations -- and as a function of a single real and positive parameter -- of source-free Maxwell
In this paper we correct previous work on magnetic charge plus a photon mass. We show that contrary to previous claims this system has a very simple, closed form solution which is the Dirac string potential multiplied by a exponential decaying part.
The duality symmetry between electricity and magnetism hidden in classical Maxwell equations suggests the existence of dual charges, which have usually been interpreted as magnetic charges and have not been observed in experiments. In quantum electro
It is shown that there exists a new physical reality -- the $Psi$--ether. All the achievements of quantum mechanics and quantum field theory are due to the fact that both the theories include the influence of $Psi$--ether on the physical processes oc