ﻻ يوجد ملخص باللغة العربية
We present the first on-sky results of the micro-lens ring tip-tilt (MLR-TT) sensor. This sensor utilizes a 3D printed micro-lens ring feeding six multi-mode fibers to sense misaligned light, allowing centroid reconstruction. A tip-tilt mirror allows the beam to be corrected, increasing the amount of light coupled into a centrally positioned single-mode (science) fiber. The sensor was tested with the iLocater acquisition camera at the Large Binocular Telescope in November 2019. The limit on the maximum achieved root mean square reconstruction accuracy was found to be 0.19 $lambda$/D in both tip and tilt, of which approximately 50% of the power originates at frequencies below 10 Hz. We show the reconstruction accuracy is highly dependent on the estimated Strehl ratio and simulations support the assumption that residual adaptive optics aberrations are the main limit to the reconstruction accuracy. We conclude that this sensor is ideally suited to remove post-adaptive optics non-common path tip tilt residuals. We discuss the next steps for the concept development, including optimizations of the lens and fiber, tuning of the correction algorithm and selection of optimal science cases.
A novel method nicknamed ELASTIC is proposed for the alignment of multiple-aperture telescopes, in particular segmented telescopes. It only needs the acquisition of two diversity images of an unresolved source, and is based on the computation of a mo
We are developing an ultra-wideband spectroscopic instrument, DESHIMA (DEep Spectroscopic HIgh-redshift MApper), based on the technologies of an on-chip filter-bank and Microwave Kinetic Inductance Detector (MKID) to investigate dusty star-burst gala
ESPRESSO is the new high-resolution spectrograph of ESOs Very-Large Telescope (VLT). It was designed for ultra-high radial-velocity precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical ex
The characterisation of exoplanets is critical to understanding planet diversity and formation, their atmospheric composition and the potential for life. This endeavour is greatly enhanced when light from the planet can be spatially separated from th
We propose and experimentally demonstrate the enhancement in the filtering quality (Q) factor of an integrated micro-ring resonator (MRR) by embedding it in an integrated Fabry-Perot (FP) cavity formed by cascaded Sagnac loop reflectors (SLRs). By ut