ترغب بنشر مسار تعليمي؟ اضغط هنا

Large amplitude tip/tilt estimation by geometric diversity for multiple-aperture telescopes

88   0   0.0 ( 0 )
 نشر من قبل Sebastien Vievard
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel method nicknamed ELASTIC is proposed for the alignment of multiple-aperture telescopes, in particular segmented telescopes. It only needs the acquisition of two diversity images of an unresolved source, and is based on the computation of a modified, frequency-shifted, cross-spectrum. It provides a polychromatic large range tip/tilt estimation with the existing hardware and an inexpensive noniterative unsupervised algorithm. Its performance is studied and optimized by means of simulations. They show that with 5000 photo-electrons/sub-aperture/frame and 1024x1024 pixel images, residues are within the capture range of interferometric phasing algorithms such as phase diversity. The closed-loop alignment of a 6 sub-aperture mirror provides an experimental demonstration of the effectiveness of the method. Author accepted version. Final version is Copyright 2017 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.



قيم البحث

اقرأ أيضاً

Focal plane wavefront sensing is an appealing technique to cophase multiple aperture telescopes. Phase diversity, operable with any aperture configuration or source extension, generally suffers from high computing load. In this Letter, we introduce, characterize and experimentally validate the LAPD algorithm, based on a fast linearized phase diversity algorithm rev{with a capture range comparable to classic phase diversity.} We demonstrate that a typical performance of lambda/75 RMS wavefront error can be reached.
The Simons Observatory (SO) is an upcoming cosmic microwave background (CMB) experiment located on Cerro Toco, Chile, that will map the microwave sky in temperature and polarization in six frequency bands spanning 27 to 285 GHz. SO will consist of on e 6-meter Large Aperture Telescope (LAT) fielding $sim$30,000 detectors and an array of three 0.42-meter Small Aperture Telescopes (SATs) fielding an additional 30,000 detectors. This synergy will allow for the extremely sensitive characterization of the CMB over angular scales ranging from an arcmin to tens of degrees, enabling a wide range of scientific output. Here we focus on the SATs targeting degree angular scales with successive dichroic instruments observing at Mid-Frequency (MF: 93/145 GHz), Ultra-High-Frequency (UHF: 225/285 GHz), and Low-Frequency (LF: 27/39 GHz). The three SATs will be able to map $sim$10% of the sky to a noise level of 2 $mu$K-arcmin when combining 93 and 145 GHz. The multiple frequency bands will allow the CMB to be separated from galactic foregrounds (primarily synchrotron and dust), with the primary science goal of characterizing the primordial tensor-to-scalar ratio, $r$, at a target level of $sigma left(rright) approx 0.003$.
{it ProtoEXIST1} is a pathfinder for the {it EXIST-HET}, a coded aperture hard X-ray telescope with a 4.5 m$^2$ CZT detector plane a 90$times$70 degree field of view to be flown as the primary instrument on the {it EXIST} mission and is intended to m onitor the full sky every 3 h in an effort to locate GRBs and other high energy transients. {it ProtoEXIST1} consists of a 256 cm$^2$ tiled CZT detector plane containing 4096 pixels composed of an 8$times$8 array of individual 1.95 cm $times$ 1.95 cm $times$ 0.5 cm CZT detector modules each with a 8 $times$ 8 pixilated anode configured as a coded aperture telescope with a fully coded $10^circtimes10^circ$ field of view employing passive side shielding and an active CsI anti-coincidence rear shield, recently completed its maiden flight out of Ft. Sumner, NM on the 9th of October 2009. During the duration of its 6 hour flight on-board calibration of the detector plane was carried out utilizing a single tagged 198.8 nCi Am-241 source along with the simultaneous measurement of the background spectrum and an observation of Cygnus X-1. Here we recount the events of the flight and report on the detector performance in a near space environment. We also briefly discuss {it ProtoEXIST2}: the next stage of detector development which employs the {it NuSTAR} ASIC enabling finer (32$times$32) anode pixilation. When completed {it ProtoEXIST2} will consist of a 256 cm$^2$ tiled array and be flown simultaneously with the ProtoEXIST1 telescope.
In this white paper (WP), we highlight several examples of small and moderate aperture telescopes that are being used for education and/or research. We further discuss potential costs for establishing new, small observatories, as well as joining exis ting international consortia. The WP includes a brief overview of select observing sites, with a discussion on how small telescopes at exceptional observing locations can be competitive, under certain circumstances, with larger and more expensive facilities located at poorer sites. In addition to research, these facilities enable many different types of educational experiences for wide range of people, from high school students to undergraduates to graduate students to postdocs. Canada should remain committed to partnering with large, international observatories such as CFHT, Gemini, and TMT, but it should also negotiate international agreements and commit funding to expand the use of small and moderate research observatories at domestic and international sites through coordination with the NRC, the Tri-Council, and the Canadian Foundation for Innovation. Both capital and operational costs (with site rental costs allowed) need to be included in support possibilities. CASCA should establish and maintain a small to moderate telescope expression of interest database that would help to facilitate Canadian institutions in organizing consortia, particularly for smaller institutions. The astronomical community should work with the NRC to make existing facilities more accessible to the astronomical community for research. This could involve, for example, automating the Plaskett and/or providing travel funds for supporting classical observing modes. Finally, a small to moderate aperture facility in the Arctic would be a world-class observatory and should be advanced over the next decade.
We present the first on-sky results of the micro-lens ring tip-tilt (MLR-TT) sensor. This sensor utilizes a 3D printed micro-lens ring feeding six multi-mode fibers to sense misaligned light, allowing centroid reconstruction. A tip-tilt mirror allows the beam to be corrected, increasing the amount of light coupled into a centrally positioned single-mode (science) fiber. The sensor was tested with the iLocater acquisition camera at the Large Binocular Telescope in November 2019. The limit on the maximum achieved root mean square reconstruction accuracy was found to be 0.19 $lambda$/D in both tip and tilt, of which approximately 50% of the power originates at frequencies below 10 Hz. We show the reconstruction accuracy is highly dependent on the estimated Strehl ratio and simulations support the assumption that residual adaptive optics aberrations are the main limit to the reconstruction accuracy. We conclude that this sensor is ideally suited to remove post-adaptive optics non-common path tip tilt residuals. We discuss the next steps for the concept development, including optimizations of the lens and fiber, tuning of the correction algorithm and selection of optimal science cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا