ﻻ يوجد ملخص باللغة العربية
Bitcoin has become the leading cryptocurrency system, but the limit on its transaction processing capacity has resulted in increased transaction fees and delayed transaction confirmation. As such, it is pertinent to understand and probably predict how transactions are handled by Bitcoin such that a user may adapt the transaction requests and a miner may adjust the block generation strategy and/or the mining pool to join. To this aim, the present paper introduces results from an analysis of transaction handling in Bitcoin. Specifically, the analysis consists of two-part. The first part is an exploratory data analysis revealing key characteristics in Bitcoin transaction handling. The second part is a predictability analysis intended to provide insights on transaction handling such as (i) transaction confirmation time, (ii) block attributes, and (iii) who has created the block. The result shows that some models do reasonably well for (ii), but surprisingly not for (i) or (iii).
Miners play a key role in cryptocurrencies such as Bitcoin: they invest substantial computational resources in processing transactions and minting new currency units. It is well known that an attacker controlling more than half of the networks mining
Since its advent in 2009, Bitcoin, a cryptography-enabled peer-to-peer digital payment system, has been gaining increasing attention from both academia and industry. An effort designed to overcome a cluster of bottlenecks inherent in existing central
Investors tend to sell their winning investments and hold onto their losers. This phenomenon, known as the emph{disposition effect} in the field of behavioural finance, is well-known and its prevalence has been shown in a number of existing markets.
Bitcoin and its decentralized computing paradigm for digital currency trading are one of the most disruptive technology in the 21st century. This paper presents a novel approach to developing a Bitcoin transaction forecast model, DLForecast, by lever
We focus on the problem of botnet orchestration and discuss how attackers can leverage decentralised technologies to dynamically control botnets with the goal of having botnets that are resilient against hostile takeovers. We cover critical elements