ترغب بنشر مسار تعليمي؟ اضغط هنا

Nongeminate Recombination in Planar and Bulk Heterojunction Organic Solar Cells

91   0   0.0 ( 0 )
 نشر من قبل Carsten Deibel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate nongeminate recombination in organic solar cells based on copper phthalocyanine (CuPc) and C$_{60}$. Two device architectures, the planar heterojunction (PHJ) and the bulk heterojunction (BHJ), are directly compared in view of differences in charge carrier decay dynamics. We apply a combination of transient photovoltage (TPV) experiments, yielding the small perturbation charge carrier lifetime, and charge extraction measurements, providing the charge carrier density. In organic solar cells, charge photogeneration and recombination primarily occur at the donor--acceptor heterointerface. Whereas the BHJ can often be approximated by an effective medium due to rather small scale phase separation, the PHJ has a well defined two-dimensional heterointerface. To study recombination dynamics in PHJ devices most relevant is the charge accumulation at this interface. As from extraction techniques only the spatially averaged carrier concentration can be determined, we derive the charge carrier density at the interface $n_{int}$ from the open circuit voltage. Comparing the experimental results with macroscopic device simulation we discuss the differences of recombination and charge carrier densities in CuPc:C$_{60}$ PHJ and BHJ devices with respect to the device performance. The open circuit voltage of BHJ is larger than for PHJ at low light intensities, but at 0.3 sun the situation is reversed: here, the PHJ can finally take advantage of its generally longer charge carrier lifetimes, as the active recombination region is smaller.



قيم البحث

اقرأ أيضاً

A combination of transient photovoltage (TPV), voltage dependent charge extraction (CE) and time delayed collection field (TDCF) measurements is applied to poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylh exyl)carbonyl] thieno[3,4-b]thiophenediyl]] (PTB7):[6,6]-phenyl-C71-butyric acid (PC$_{71}$BM) bulk heterojunction solar cells to analyze the limitations of photovoltaic performance. Devices are processed from pure chlorobenzene (CB) solution and a subset was optimized with 1,8-diiodooctane (DIO) as co-solvent. The dramatic changes in device performance are discussed with respect to the dominating loss processes. While in the devices processed from CB solution, severe geminate and nongeminate recombination is observed, the use of DIO facilitates efficient polaron pair dissociation and minimizes geminate recombination. Thus, from the determined charge carrier decay rate under open circuit conditions and the voltage dependent charge carrier densities $n(V)$, the nongeminate loss current $j_{loss}$ of the samples with DIO alone enables us to reconstruct the current/voltage ($j/V$) characteristics across the whole operational voltage range. Geminate and nongeminate losses are considered to describe the $j/V$ response of cells prepared without additive, but lead to a clearly overestimated device performance. We attribute the deviation between measured and reconstructed $j/V$ characteristics to trapped charges in isolated domains of pure fullerene phases.
State of the art organic solar cells exhibit power conversion efficiencies of 18 % and above. These devices benefit from a significant suppression of free charge recombination with regard to the Langevin-limit of charge encounter in a homogeneous med ium. It has been recognized that the main cause of suppressed free charge recombination is the reformation and resplitting of charge transfer states at the interface between donor and acceptor domains. Here, we use kinetic Monte Carlo simulations to understand the interplay between free charge motion and recombination in an energetically-disordered phase-separated donor-acceptor blend. We identify conditions under which recombination is encounter-dominated and resplitting-dominated. In the latter regime, the non-geminate recombination coefficient becomes independent of the attempt-to-hop frequency, and for a given disorder, independent of charge carrier mobility. Our simulations show that free charge encounter in the phase-separated disordered blend is determined by the average mobility of all carriers, while CT reformation and resplitting involves mostly states near the transport energy. As a consequence, charge encounter is more affected by increased disorder than the resplitting of the CT state. As a consequence, the larger is the energetic disorder, the stronger will CT-resplitting suppress non-geminate recombination versus the Langevin-limit. These findings have important implications for the understanding of suppressed recombination in solar cells with non-fullerene acceptors which are known to exhibit lower energetic disorder than fullerenes.
246 - Zhenhua Yang 2018
Hybrid conjugated polymer/fullerene filaments based on MEH-PPV/PVP/PCBM are prepared by electrospinning, and their properties assessed by scanning electron, atomic and lateral force, tunnelling, and confocal microscopy, as well as by attenuated total reflection Fourier transform-infrared spectroscopy, photoluminescence quantum yield and spatially-resolved fluorescence. Highlighted features include ribbon-shape of the realized fibers, and the persistence of a network serving as a template for heterogeneous active layers in solar cell devices. A set of favorable characteristics is evidenced in this way in terms of homogeneous charge transport behavior and formation of effective interfaces for diffusion and dissociation of photogenerated excitons. The interaction of the organic filaments with light, exhibiting specific light-scattering properties of the nanofibrous mat, might also contribute to spreading incident radiation across the active layers, thus potentially enhancing photovoltaic performance. This method might be applied to other electron donor-electron acceptor material systems for the fabrication of solar cell devices enhanced by nanofibrillar morphologies embedding conjugated polymers and fullerene compounds.
Silicon heterojunction (SHJ) solar cells represent a promising technological approach towards higher photovoltaics efficiencies and lower fabrication cost. While the device physics of SHJ solar cells have been studied extensively in the past, the way s in which nanoscopic electronic processes such as charge-carrier generation, recombination, trapping, and percolation affect SHJ device properties macroscopically have yet to be fully understood. We report the study of atomic scale current percolation at state-of-the-art a-Si:H/c-Si heterojunction solar cells under ambient operating conditions, revealing the profound complexity of electronic SHJ interface processes. Using conduction atomic force microscopy (cAFM), it is shown that the macroscopic current-voltage characteristics of SHJ solar cells is governed by the average of local nanometer-sized percolation pathways associated with bandtail states of the doped a-Si:H selective contact leading to above bandgap open circuit voltages ($V_{mbox{OC}}$) as high as 1.2 V ($V_{mbox{OC}}>e E_{mbox{gap}}^{mbox{Si}}$). This is not in violation of photovoltaic device physics but a consequence of the nature of nanometer-scale charge percolation pathways which originate from trap-assisted tunneling causing dark leakage current. We show that the broad distribution of local photovoltage is a direct consequence of randomly trapped charges at a-Si:H dangling bond defects which lead to strong local potential fluctuations and induce random telegraph noise of the dark current.
The power conversion efficiencies (PCEs) of organic solar cells (OSCs) using non-fullerene acceptors (NFAs) have now reached 18%. However, this is still lower than inorganic solar cells, for which PCEs >20% are commonplace. A key reason is that OSCs still show low open-circuit voltages (Voc) relative to their optical band gaps, attributed to non-radiative recombination. For OSCs to compete with inorganics in efficiency, all non-radiative loss pathways must be identified and where possible, removed. Here, we show that in most NFA OSCs, the majority of charge recombination at open-circuit proceeds via formation of non-emissive NFA triplet excitons (T1); in the benchmark PM6:Y6 blend, this fraction reaches 90%, contributing 60 mV to the reduction of Voc. We develop a new design to prevent recombination via this non-radiative channel through the engineering of significant hybridisation between the NFA T1 and the spin-triplet charge transfer exciton (3CTE). We model that the rate of the back charge transfer from 3CTE to T1 can be reduced by an order of magnitude, allowing re-dissociation of the 3CTE. We then demonstrate NFA systems where T1 formation is suppressed. This work therefore provides a clear design pathway for improved OSC performance to 20% PCE and beyond.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا