ﻻ يوجد ملخص باللغة العربية
The power conversion efficiencies (PCEs) of organic solar cells (OSCs) using non-fullerene acceptors (NFAs) have now reached 18%. However, this is still lower than inorganic solar cells, for which PCEs >20% are commonplace. A key reason is that OSCs still show low open-circuit voltages (Voc) relative to their optical band gaps, attributed to non-radiative recombination. For OSCs to compete with inorganics in efficiency, all non-radiative loss pathways must be identified and where possible, removed. Here, we show that in most NFA OSCs, the majority of charge recombination at open-circuit proceeds via formation of non-emissive NFA triplet excitons (T1); in the benchmark PM6:Y6 blend, this fraction reaches 90%, contributing 60 mV to the reduction of Voc. We develop a new design to prevent recombination via this non-radiative channel through the engineering of significant hybridisation between the NFA T1 and the spin-triplet charge transfer exciton (3CTE). We model that the rate of the back charge transfer from 3CTE to T1 can be reduced by an order of magnitude, allowing re-dissociation of the 3CTE. We then demonstrate NFA systems where T1 formation is suppressed. This work therefore provides a clear design pathway for improved OSC performance to 20% PCE and beyond.
Non-fullerene acceptors based on perylenediimides (PDIs) have garnered significant interest as an alternative to fullerene acceptors in organic photovoltaics (OPVs), but their charge transport phenomena are not well understood, especially in bulk het
We investigate the viability of highly efficient organic solar cells (OSCs) based on non-fullerene acceptors (NFA) by taking into consideration efficiency loss channels and stability issues caused by triplet excitons (TE) formation. OSCs based on a b
We investigate nongeminate recombination in organic solar cells based on copper phthalocyanine (CuPc) and C$_{60}$. Two device architectures, the planar heterojunction (PHJ) and the bulk heterojunction (BHJ), are directly compared in view of differen
Carbene-metal-amides (CMAs) are a promising family of donor-bridge-acceptor molecular charge-transfer emitters for organic light-emitting diodes (OLEDs). Here a universal approach is introduced to tune the energy of their charge-transfer emission. A
Ternary organic solar cells (TOSC) are currently under intensive investigation, recently reaching a record efficiency of 17.1%. The origin of the device open-circuit voltage (VOC), already a multifaceted issue in binary OSC, is even more complex in T