ﻻ يوجد ملخص باللغة العربية
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks. Despite their wide applicability, solving such problems efficiently and effectively is challenging in the presence of large amounts of data using existing stochastic minimax methods. We study a class of stochastic minimax methods and develop a communication-efficient distributed stochastic extragradient algorithm, LocalAdaSEG, with an adaptive learning rate suitable for solving convex-concave minimax problem in the Parameter-Server model. LocalAdaSEG has three main features: (i) periodic communication strategy reduces the communication cost between workers and the server; (ii) an adaptive learning rate that is computed locally and allows for tuning-free implementation; and (iii) theoretically, a nearly linear speed-up with respect to the dominant variance term, arising from estimation of the stochastic gradient, is proven in both the smooth and nonsmooth convex-concave settings. LocalAdaSEG is used to solve a stochastic bilinear game, and train generative adversarial network. We compare LocalAdaSEG against several existing optimizers for minimax problems and demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
We consider a general class of nonconvex-PL minimax problems in the cross-device federated learning setting. Although nonconvex-PL minimax problems have received a lot of interest in recent years, existing algorithms do not apply to the cross-device
Many machine learning problems can be formulated as minimax problems such as Generative Adversarial Networks (GANs), AUC maximization and robust estimation, to mention but a few. A substantial amount of studies are devoted to studying the convergence
We introduce the online stochastic Convex Programming (CP) problem, a very general version of stochastic online problems which allows arbitrary concave objectives and convex feasibility constraints. Many well-studied problems like online stochastic p
We study adversary-resilient stochastic distributed optimization, in which $m$ machines can independently compute stochastic gradients, and cooperate to jointly optimize over their local objective functions. However, an $alpha$-fraction of the machin
Minimax optimization problems are an important class of optimization problems arising from modern machine learning and traditional research areas. While there have been many numerical algorithms for solving smooth convex-concave minimax problems, num