ترغب بنشر مسار تعليمي؟ اضغط هنا

GEM: A General Evaluation Benchmark for Multimodal Tasks

137   0   0.0 ( 0 )
 نشر من قبل Lin Su
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present GEM as a General Evaluation benchmark for Multimodal tasks. Different from existing datasets such as GLUE, SuperGLUE, XGLUE and XTREME that mainly focus on natural language tasks, GEM is a large-scale vision-language benchmark, which consists of GEM-I for image-language tasks and GEM-V for video-language tasks. Comparing with existing multimodal datasets such as MSCOCO and Flicker30K for image-language tasks, YouCook2 and MSR-VTT for video-language tasks, GEM is not only the largest vision-language dataset covering image-language tasks and video-language tasks at the same time, but also labeled in multiple languages. We also provide two baseline models for this benchmark. We will release the dataset, code and baseline models, aiming to advance the development of multilingual multimodal research.



قيم البحث

اقرأ أيضاً

Multi-task benchmarks such as GLUE and SuperGLUE have driven great progress of pretraining and transfer learning in Natural Language Processing (NLP). These benchmarks mostly focus on a range of Natural Language Understanding (NLU) tasks, without con sidering the Natural Language Generation (NLG) models. In this paper, we present the General Language Generation Evaluation (GLGE), a new multi-task benchmark for evaluating the generalization capabilities of NLG models across eight language generation tasks. For each task, we continue to design three subtasks in terms of task difficulty (GLGE-Easy, GLGE-Medium, and GLGE-Hard). This introduces 24 subtasks to comprehensively compare model performance. To encourage research on pretraining and transfer learning on NLG models, we make GLGE publicly available and build a leaderboard with strong baselines including MASS, BART, and ProphetNet (The source code and dataset are publicly available at https://github.com/microsoft/glge).
We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this m oving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for which we are organizing a shared task at our ACL 2021 Workshop and to which we invite the entire NLG community to participate.
Multimodal affect recognition constitutes an important aspect for enhancing interpersonal relationships in human-computer interaction. However, relevant data is hard to come by and notably costly to annotate, which poses a challenging barrier to buil d robust multimodal affect recognition systems. Models trained on these relatively small datasets tend to overfit and the improvement gained by using complex state-of-the-art models is marginal compared to simple baselines. Meanwhile, there are many different multimodal affect recognition datasets, though each may be small. In this paper, we propose to leverage these datasets using weakly-supervised multi-task learning to improve the generalization performance on each of them. Specifically, we explore three multimodal affect recognition tasks: 1) emotion recognition; 2) sentiment analysis; and 3) sarcasm recognition. Our experimental results show that multi-tasking can benefit all these tasks, achieving an improvement up to 2.9% accuracy and 3.3% F1-score. Furthermore, our method also helps to improve the stability of model performance. In addition, our analysis suggests that weak supervision can provide a comparable contribution to strong supervision if the tasks are highly correlated.
As a kind of new expression elements, Internet memes are popular and extensively used in online chatting scenarios since they manage to make dialogues vivid, moving, and interesting. However, most current dialogue researches focus on text-only dialog ue tasks. In this paper, we propose a new task named as textbf{M}eme incorporated textbf{O}pen-domain textbf{D}ialogue (MOD). Compared to previous dialogue tasks, MOD is much more challenging since it requires the model to understand the multimodal elements as well as the emotions behind them. To facilitate the MOD research, we construct a large-scale open-domain multimodal dialogue dataset incorporating abundant Internet memes into utterances. The dataset consists of $sim$45K Chinese conversations with $sim$606K utterances. Each conversation contains about $13$ utterances with about $4$ Internet memes on average and each utterance equipped with an Internet meme is annotated with the corresponding emotion. In addition, we present a simple and effective method, which utilizes a unified generation network to solve the MOD task. Experimental results demonstrate that our method trained on the proposed corpus is able to achieve expressive communication including texts and memes. The corpus and models have been publicly available at https://github.com/lizekang/DSTC10-MOD.
Linguistically informed analyses of language models (LMs) contribute to the understanding and improvement of these models. Here, we introduce the corpus of Chinese linguistic minimal pairs (CLiMP), which can be used to investigate what knowledge Chin ese LMs acquire. CLiMP consists of sets of 1,000 minimal pairs (MPs) for 16 syntactic contrasts in Mandarin, covering 9 major Mandarin linguistic phenomena. The MPs are semi-automatically generated, and human agreement with the labels in CLiMP is 95.8%. We evaluated 11 different LMs on CLiMP, covering n-grams, LSTMs, and Chinese BERT. We find that classifier-noun agreement and verb complement selection are the phenomena that models generally perform best at. However, models struggle the most with the ba construction, binding, and filler-gap dependencies. Overall, Chinese BERT achieves an 81.8% average accuracy, while the performances of LSTMs and 5-grams are only moderately above chance level.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا