ترغب بنشر مسار تعليمي؟ اضغط هنا

Intertwined states at finite temperatures in the Hubbard model

123   0   0.0 ( 0 )
 نشر من قبل Thomas Devereaux
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Significant advances in numerical techniques have enabled recent breakthroughs in the study of various properties of the Hubbard model - a seemingly simple, yet complex model of correlated electrons that has been a focus of study for more than half a century. In particular, it captures the essence of strong correlations, and is believed to possess various emergent, low energy states and collective excitations characteristic of cuprate high-temperature superconducting materials. While a thorough review of all activity is not possible here, we have focused the discussion on our recent work using unbiased, numerically exact, ``brute force, finite temperature quantum Monte Carlo methods. Our various studies reveal a rich variety of quantum liquid crystal phases, and complementary transport properties, which answer some questions, but certainly raise others concerning ``strange metal behavior and the ultimate fate of quasiparticles in the Hubbard model.



قيم البحث

اقرأ أيضاً

We explore the Matsubara quasiparticle fraction and the pseudogap of the two-dimensional Hubbard model with the dynamical cluster quantum Monte Carlo method. The character of the quasiparticle fraction changes from non-Fermi liquid, to marginal Fermi liquid to Fermi liquid as a function of doping, indicating the presence of a quantum critical point separating non-Fermi liquid from Fermi liquid character. Marginal Fermi liquid character is found at low temperatures at a very narrow range of doping where the single-particle density of states is also symmetric. At higher doping the character of the quasiparticle fraction is seen to cross over from Fermi Liquid to Marginal Fermi liquid as the temperature increases.
Under the action of coherent periodic driving a generic quantum system will undergo Floquet heating and continously absorb energy until it reaches a featureless thermal state. The phase-space constraints induced by certain symmetries can, however, pr event this and allow the system to dynamically form robust steady states with off-diagonal long-range order. In this work, we take the Hubbard model on an arbitrary lattice with arbitrary filling and, by simultaneously diagonalising the two possible SU(2) symmetries of the system, we analytically construct the correlated steady states for different symmetry classes of driving. This construction allows us to make verifiable, quantitative predictions about the long-range particle-hole and spin-exchange correlations that these states can possess. In the case when both SU(2) symmetries are preserved in the thermodynamic limit we show how the driving can be used to form a unique condensate which simultaneously hosts particle-hole and spin-wave order.
The repulsive Hubbard model has been immensely useful in understanding strongly correlated electron systems, and serves as the paradigmatic model of the field. Despite its simplicity, it exhibits a strikingly rich phenomenology which is reminiscent o f that observed in quantum materials. Nevertheless, much of its phase diagram remains controversial. Here, we review a subset of what is known about the Hubbard model, based on exact results or controlled approximate solutions in various limits, for which there is a suitable small parameter. Our primary focus is on the ground state properties of the system on various lattices in two spatial dimensions, although both lower and higher dimensions are discussed as well. Finally, we highlight some of the important outstanding open questions.
Using the variational cluster approach (VCA), we study the transition from the antiferromagnetic to the superconducting phase of the two-dimensional Hubbard model at zero temperature. Our calculations are based on a new method to evaluate the VCA gra nd potential which employs a modified Lanczos algorithm and avoids integrations over the real or imaginary frequency axis. Thereby, very accurate results are possible for cluster sizes not accessible to full diagonalization. This is important for an improved treatment of short-range correlations, including correlations between Cooper pairs in particular. We investigate the cluster-size dependence of the phase-separation tendency that has been proposed recently on the basis of calculations for smaller clusters. It is shown that the energy barrier driving the phase separation decreases with increasing cluster size. This supports the conjecture that the ground state exhibits microscopic inhomogeneities rather than macroscopic phase separation. The evolution of the single-particle spectum as a function of doping is studied in addtion and the relevance of our results for experimental findings is pointed out.
By employing unbiased numerical methods, we show that pulse irradiation can induce unconventional superconductivity even in the Mott insulator of the Hubbard model. The superconductivity found here in the photoexcited state is due to the $eta$-pairin g mechanism, characterized by staggered pair-density-wave oscillations in the off-diagonal long-range correlation, and is absent in the ground-state phase diagram; i.e., it is induced neither by a change of the effective interaction of the Hubbard model nor by simple photocarrier doping. Because of the selection rule, we show that the nonlinear optical response is essential to increase the number of $eta$ pairs and thus enhance the superconducting correlation in the photoexcited state. Our finding demonstrates that nonequilibrium many-body dynamics is an alternative pathway to access a new exotic quantum state that is absent in the ground-state phase diagram and also provides an alternative mechanism for enhancing superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا