ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational cluster approach to the Hubbard model: Phase-separation tendency and finite-size effects

250   0   0.0 ( 0 )
 نشر من قبل Markus Aichhorn
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the variational cluster approach (VCA), we study the transition from the antiferromagnetic to the superconducting phase of the two-dimensional Hubbard model at zero temperature. Our calculations are based on a new method to evaluate the VCA grand potential which employs a modified Lanczos algorithm and avoids integrations over the real or imaginary frequency axis. Thereby, very accurate results are possible for cluster sizes not accessible to full diagonalization. This is important for an improved treatment of short-range correlations, including correlations between Cooper pairs in particular. We investigate the cluster-size dependence of the phase-separation tendency that has been proposed recently on the basis of calculations for smaller clusters. It is shown that the energy barrier driving the phase separation decreases with increasing cluster size. This supports the conjecture that the ground state exhibits microscopic inhomogeneities rather than macroscopic phase separation. The evolution of the single-particle spectum as a function of doping is studied in addtion and the relevance of our results for experimental findings is pointed out.

قيم البحث

اقرأ أيضاً

We carry out a detailed numerical study of the three-band Hubbard model in the underdoped region both in the hole- as well as in the electron-doped case by means of the variational cluster approach. Both the phase diagram and the low-energy single-pa rticle spectrum are very similar to recent results for the single-band Hubbard model with next-nearest-neighbor hoppings. In particular, we obtain a mixed antiferromagnetic+superconducting phase at low doping with a first-order transition to a pure superconducting phase accompanied by phase separation. In the single-particle spectrum a clear Zhang-Rice singlet band with an incoherent and a coherent part can be seen, in which holes enter upon doping around $(pi/2,pi/2)$. The latter is very similar to the coherent quasi-particle band crossing the Fermi surface in the single-band model. Doped electrons go instead into the upper Hubbard band, first filling the regions of the Brillouin zone around $(pi,0)$. This fact can be related to the enhanced robustness of the antiferromagnetic phase as a function of electron doping compared to hole doping.
We applied the Recurrent Variational Approach to the two-leg Hubbard ladder. At half-filling, our variational Ansatz was a generalization of the resonating valence bond state. At finite doping, hole pairs were allowed to move in the resonating valenc e bond background. The results obtained by the Recurrent Variational Approach were compared with results from Density Matrix Renormalization Group.
We address some open questions regarding the phase diagram of the one-dimensional Hubbard model with asymmetric hopping coefficients and balanced species. In the attractive regime we present a numerical study of the passage from on-site pairing domin ant correlations at small asymmetries to charge-density waves in the region with markedly different hopping coefficients. In the repulsive regime we exploit two analytical treatments in the strong- and weak-coupling regimes in order to locate the onset of phase separation at small and large asymmetries respectively.
By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model. Here, the ground-state phase diagram is tri ggered by several energy scales, i.e., the electron hopping $t$, the on-site electron-electron interaction $U$, the phonon energy $omega_0$, and the electron-phonon coupling $g$. At half filling, the ground state is an antiferromagnetic insulator for $U gtrsim 2g^2/omega_0$, while it is a charge-density-wave (or bi-polaronic) insulator for $U lesssim 2g^2/omega_0$. In addition to these phases, we find a superconducting phase that intrudes between them. For $omega_0/t=1$, superconductivity emerges when both $U/t$ and $2g^2/tomega_0$ are small; then, by increasing the value of the phonon energy $omega_0$, it extends along the transition line between antiferromagnetic and charge-density-wave insulators. Away from half filling, phase separation occurs when doping the charge-density-wave insulator, while a uniform (superconducting) ground state is found when doping the superconducting phase. In the analysis of finite-size effects, it is extremely important to average over twisted boundary conditions, especially in the weak-coupling limit and in the doped case.
170 - S. Allen , , A.-M.S. Tremblay 2000
A non-perturbative approach to the single-band attractive Hubbard model is presented in the general context of functional derivative approaches to many-body theories. As in previous work on the repulsive model, the first step is based on a local-fiel d type ansatz, on enforcement of the Pauli principle and a number of crucial sum-rules. The Mermin-Wagner theorem in two dimensions is automatically satisfied. At this level, two-particle self-consistency has been achieved. In the second step of the approximation, an improved expression for the self-energy is obtained by using the results of the first step in an exact expression for the self-energy where the high- and low-frequency behaviors appear separately. The result is a cooperon-like formula. The required vertex corrections are included in this self-energy expression, as required by the absence of a Migdal theorem for this problem. Other approaches to the attractive Hubbard model are critically compared. Physical consequences of the present approach and agreement with Monte Carlo simulations are demonstrated in the accompanying paper (following this one).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا