ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling Identifiable Features from Noisy Data with Structured Nonlinear ICA

118   0   0.0 ( 0 )
 نشر من قبل Hermanni H\\\"alv\\\"a
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new general identifiable framework for principled disentanglement referred to as Structured Nonlinear Independent Component Analysis (SNICA). Our contribution is to extend the identifiability theory of deep generative models for a very broad class of structured models. While previous works have shown identifiability for specific classes of time-series models, our theorems extend this to more general temporal structures as well as to models with more complex structures such as spatial dependencies. In particular, we establish the major result that identifiability for this framework holds even in the presence of noise of unknown distribution. The SNICA setting therefore subsumes all the existing nonlinear ICA models for time-series and also allows for new much richer identifiable models. Finally, as an example of our frameworks flexibility, we introduce the first nonlinear ICA model for time-series that combines the following very useful properties: it accounts for both nonstationarity and autocorrelation in a fully unsupervised setting; performs dimensionality reduction; models hidden states; and enables principled estimation and inference by variational maximum-likelihood.



قيم البحث

اقرأ أيضاً

Modern machine learning often operates in the regime where the number of parameters is much higher than the number of data points, with zero training loss and yet good generalization, thereby contradicting the classical bias-variance trade-off. This textit{benign overfitting} phenomenon has recently been characterized using so called textit{double descent} curves where the risk undergoes another descent (in addition to the classical U-shaped learning curve when the number of parameters is small) as we increase the number of parameters beyond a certain threshold. In this paper, we examine the conditions under which textit{Benign Overfitting} occurs in the random feature (RF) models, i.e. in a two-layer neural network with fixed first layer weights. We adopt a new view of random feature and show that textit{benign overfitting} arises due to the noise which resides in such features (the noise may already be present in the data and propagate to the features or it may be added by the user to the features directly) and plays an important implicit regularization role in the phenomenon.
Reliable measures of statistical dependence could be useful tools for learning independent features and performing tasks like source separation using Independent Component Analysis (ICA). Unfortunately, many of such measures, like the mutual informat ion, are hard to estimate and optimize directly. We propose to learn independent features with adversarial objectives which optimize such measures implicitly. These objectives compare samples from the joint distribution and the product of the marginals without the need to compute any probability densities. We also propose two methods for obtaining samples from the product of the marginals using either a simple resampling trick or a separate parametric distribution. Our experiments show that this strategy can easily be applied to different types of model architectures and solve both linear and non-linear ICA problems.
We consider the problem of recovering a common latent source with independent components from multiple views. This applies to settings in which a variable is measured with multiple experimental modalities, and where the goal is to synthesize the disp arate measurements into a single unified representation. We consider the case that the observed views are a nonlinear mixing of component-wise corruptions of the sources. When the views are considered separately, this reduces to nonlinear Independent Component Analysis (ICA) for which it is provably impossible to undo the mixing. We present novel identifiability proofs that this is possible when the multiple views are considered jointly, showing that the mixing can theoretically be undone using function approximators such as deep neural networks. In contrast to known identifiability results for nonlinear ICA, we prove that independent latent sources with arbitrary mixing can be recovered as long as multiple, sufficiently different noisy views are available.
It can be argued that finding an interpretable low-dimensional representation of a potentially high-dimensional phenomenon is central to the scientific enterprise. Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application. This work proposes mechanism sparsity regularization as a new principle to achieve nonlinear ICA when latent factors depend sparsely on observed auxiliary variables and/or past latent factors. We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse and if some graphical criterion is satisfied by the data generating process. As a special case, our framework shows how one can leverage unknown-target interventions on the latent factors to disentangle them, thus drawing further connections between ICA and causality. We validate our theoretical results with toy experiments.
Effectively modeling phenomena present in highly nonlinear dynamical systems whilst also accurately quantifying uncertainty is a challenging task, which often requires problem-specific techniques. We present a novel, domain-agnostic approach to tackl ing this problem, using compositions of physics-informed random features, derived from ordinary differential equations. The architecture of our model leverages recent advances in approximate inference for deep Gaussian processes, such as layer-wise weight-space approximations which allow us to incorporate random Fourier features, and stochastic variational inference for approximate Bayesian inference. We provide evidence that our model is capable of capturing highly nonlinear behaviour in real-world multivariate time series data. In addition, we find that our approach achieves comparable performance to a number of other probabilistic models on benchmark regression tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا