ترغب بنشر مسار تعليمي؟ اضغط هنا

Cardinality Minimization, Constraints, and Regularization: A Survey

115   0   0.0 ( 0 )
 نشر من قبل Andreas Tillmann
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and give concrete examples from diverse application fields such as signal and image processing, portfolio selection, or machine learning. The paper discusses general-purpose modeling techniques and broadly applicable as well as problem-specific exact and heuristic solution approaches. While our perspective is that of mathematical optimization, a main goal of this work is to reach out to and build bridges between the different communities in which cardinality optimization problems are frequently encountered. In particular, we highlight that modern mixed-integer programming, which is often regarded as impractical due to commonly unsatisfactory behavior of black-box solvers applied to generic problem formulations, can in fact produce provably high-quality or even optimal solutions for cardinality optimization problems, even in large-scale real-world settings. Achieving such performance typically draws on the merits of problem-specific knowledge that may stem from different fields of application and, e.g., shed light on structural properties of a model or its solutions, or lead to the development of efficient heuristics; we also provide some illustrative examples.



قيم البحث

اقرأ أيضاً

123 - Christian Leonard 2007
Entropy functionals (i.e. convex integral functionals) and extensions of these functionals are minimized on convex sets. This paper is aimed at reducing as much as possible the assumptions on the constraint set. Dual equalities and characterizations of the minimizers are obtained with weak constraint qualifications.
This paper presents a design methodology for optimal transmission energy allocation at a sensor equipped with energy harvesting technology for remote state estimation of linear stochastic dynamical systems. In this framework, the sensor measurements as noi
In this paper we consider the reconstruction problem of photoacoustic tomography (PAT) with a flat observation surface. We develop a direct reconstruction method that employs regularization with wavelet sparsity constraints. To that end, we derive a wavelet-vaguelette decomposition (WVD) for the PAT forward operator and a corresponding explicit reconstruction formula in the case of exact data. In the case of noisy data, we combine the WVD reconstruction formula with soft-thresholding which yields a spatially adaptive estimation method. We demonstrate that our method is statistically optimal for white random noise if the unknown function is assumed to lie in any Besov-ball. We present generalizations of this approach and, in particular, we discuss the combination of vaguelette soft-thresholding with a TV prior. We also provide an efficient implementation of the vaguelette transform that leads to fast image reconstruction algorithms supported by numerical results.
In this paper we propose a primal-dual homotopy method for $ell_1$-minimization problems with infinity norm constraints in the context of sparse reconstruction. The natural homotopy parameter is the value of the bound for the constraints and we show that there exists a piecewise linear solution path with finitely many break points for the primal problem and a respective piecewise constant path for the dual problem. We show that by solving a small linear program, one can jump to the next primal break point and then, solving another small linear program, a new optimal dual solution is calculated which enables the next such jump in the subsequent iteration. Using a theorem of the alternative, we show that the method never gets stuck and indeed calculates the whole path in a finite number of steps. Numerical experiments demonstrate the effectiveness of our algorithm. In many cases, our method significantly outperforms commercial LP solvers; this is possible since our approach employs a sequence of considerably simpler auxiliary linear programs that can be solved efficiently with specialized active-set strategies.
We consider the problem of fairly allocating indivisible goods, among agents, under cardinality constraints and additive valuations. In this setting, we are given a partition of the entire set of goods---i.e., the goods are categorized---and a limit is specified on the number of goods that can be allocated from each category to any agent. The objective here is to find a fair allocation in which the subset of goods assigned to any agent satisfies the given cardinality constraints. This problem naturally captures a number of resource-allocation applications, and is a generalization of the well-studied (unconstrained) fair division problem. The two central notions of fairness, in the context of fair division of indivisible goods, are envy freeness up to one good (EF1) and the (approximate) maximin share guarantee (MMS). We show that the existence and algorithmic guarantees established for these solution concepts in the unconstrained setting can essentially be achieved under cardinality constraints. Specifically, we develop efficient algorithms which compute EF1 and approximately MMS allocations in the constrained setting. Furthermore, focusing on the case wherein all the agents have the same additive valuation, we establish that EF1 allocations exist and can be computed efficiently even under laminar matroid constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا