ترغب بنشر مسار تعليمي؟ اضغط هنا

A Primal-Dual Homotopy Algorithm for $ell_{1}$-Minimization with $ell_{infty}$-Constraints

78   0   0.0 ( 0 )
 نشر من قبل Dirk Lorenz
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we propose a primal-dual homotopy method for $ell_1$-minimization problems with infinity norm constraints in the context of sparse reconstruction. The natural homotopy parameter is the value of the bound for the constraints and we show that there exists a piecewise linear solution path with finitely many break points for the primal problem and a respective piecewise constant path for the dual problem. We show that by solving a small linear program, one can jump to the next primal break point and then, solving another small linear program, a new optimal dual solution is calculated which enables the next such jump in the subsequent iteration. Using a theorem of the alternative, we show that the method never gets stuck and indeed calculates the whole path in a finite number of steps. Numerical experiments demonstrate the effectiveness of our algorithm. In many cases, our method significantly outperforms commercial LP solvers; this is possible since our approach employs a sequence of considerably simpler auxiliary linear programs that can be solved efficiently with specialized active-set strategies.



قيم البحث

اقرأ أيضاً

We present an iterative support shrinking algorithm for $ell_{p}$-$ell_{q}$ minimization~($0 <p < 1 leq q < infty $). This algorithm guarantees the nonexpensiveness of the signal support set and can be easily implemented after being proximally linear ized. The subproblem can be very efficiently solved due to its convexity and reducing size along iteration. We prove that the iterates of the algorithm globally converge to a stationary point of the $ell_{p}$-$ell_{q}$ objective function. In addition, we show a lower bound theory for the iteration sequence, which is more practical than the lower bound results for local minimizers in the literature.
77 - Yufei Yi , Matey Neykov 2021
The Chebyshev or $ell_{infty}$ estimator is an unconventional alternative to the ordinary least squares in solving linear regressions. It is defined as the minimizer of the $ell_{infty}$ objective function begin{align*} hat{boldsymbol{beta}} := arg min_{boldsymbol{beta}} |boldsymbol{Y} - mathbf{X}boldsymbol{beta}|_{infty}. end{align*} The asymptotic distribution of the Chebyshev estimator under fixed number of covariates were recently studied (Knight, 2020), yet finite sample guarantees and generalizations to high-dimensional settings remain open. In this paper, we develop non-asymptotic upper bounds on the estimation error $|hat{boldsymbol{beta}}-boldsymbol{beta}^*|_2$ for a Chebyshev estimator $hat{boldsymbol{beta}}$, in a regression setting with uniformly distributed noise $varepsilon_isim U([-a,a])$ where $a$ is either known or unknown. With relatively mild assumptions on the (random) design matrix $mathbf{X}$, we can bound the error rate by $frac{C_p}{n}$ with high probability, for some constant $C_p$ depending on the dimension $p$ and the law of the design. Furthermore, we illustrate that there exist designs for which the Chebyshev estimator is (nearly) minimax optimal. In addition we show that Chebyshevs LASSO has advantages over the regular LASSO in high dimensional situations, provided that the noise is uniform. Specifically, we argue that it achieves a much faster rate of estimation under certain assumptions on the growth rate of the sparsity level and the ambient dimension with respect to the sample size.
We study the online constrained ranking problem motivated by an application to web-traffic shaping: an online stream of sessions arrive in which, within each session, we are asked to rank items. The challenge involves optimizing the ranking in each s ession so that local vs. global objectives are controlled: within each session one wishes to maximize a reward (local) while satisfying certain constraints over the entire set of sessions (global). A typical application of this setup is that of page optimization in a web portal. We wish to rank items so that not only is user engagement maximized in each session, but also other business constraints (such as the number of views/clicks delivered to various publishing partners) are satisfied. We describe an online algorithm for performing this optimization. A novel element of our approach is the use of linear programming duality and connections to the celebrated Hungarian algorithm. This framework enables us to determine a set of emph{shadow prices} for each traffic-shaping constraint that can then be used directly in the final ranking function to assign near-optimal rankings. The (dual) linear program can be solved off-line periodically to determine the prices. At serving time these prices are used as weights to compute weighted rank-scores for the items, and the simplicity of the approach facilitates scalability to web applications. We provide rigorous theoretical guarantees for the performance of our online algorithm and validate our approach using numerical experiments on real web-traffic data from a prominent internet portal.
This paper investigates accelerating the convergence of distributed optimization algorithms on non-convex problems. We propose a distributed primal-dual stochastic gradient descent~(SGD) equipped with powerball method to accelerate. We show that the proposed algorithm achieves the linear speedup convergence rate $mathcal{O}(1/sqrt{nT})$ for general smooth (possibly non-convex) cost functions. We demonstrate the efficiency of the algorithm through numerical experiments by training two-layer fully connected neural networks and convolutional neural networks on the MNIST dataset to compare with state-of-the-art distributed SGD algorithms and centralized SGD algorithms.
In this paper, we consider the problem of recovering a sparse signal based on penalized least squares formulations. We develop a novel algorithm of primal-dual active set type for a class of nonconvex sparsity-promoting penalties, including $ell^0$, bridge, smoothly clipped absolute deviation, capped $ell^1$ and minimax concavity penalty. First we establish the existence of a global minimizer for the related optimization problems. Then we derive a novel necessary optimality condition for the global minimizer using the associated thresholding operator. The solutions to the optimality system are coordinate-wise minimizers, and under minor conditions, they are also local minimizers. Upon introducing the dual variable, the active set can be determined using the primal and dual variables together. Further, this relation lends itself to an iterative algorithm of active set type which at each step involves first updating the primal variable only on the active set and then updating the dual variable explicitly. When combined with a continuation strategy on the regularization parameter, the primal dual active set method is shown to converge globally to the underlying regression target under certain regularity conditions. Extensive numerical experiments with both simulated and real data demonstrate its superior performance in efficiency and accuracy compared with the existing sparse recovery methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا