ﻻ يوجد ملخص باللغة العربية
Motivated by recent experiments, we calculate particle emission from a Bose-Einstein condensate trapped in a single deep well of a one-dimensional lattice when the interaction strength is modulated. In addition to pair emission, which has been widely studied, we observe single-particle emission. Within linear response, we are able to write closed-form expressions for the single-particle emission rates and reduce the pair emission rates to one-dimensional integrals. The full nonlinear theory of single-particle emission is reduced to a single variable integrodifferential equation, which we numerically solve.
Motivated by recent experiments, we analyse the stability of a three-dimensional Bose-Einstein condensate (BEC) loaded in a periodically driven one-dimensional optical lattice. Such periodically driven systems do not have a thermodynamic ground state
Motivated by recent experimental observations (C.V. Parker {it et al.}, Nature Physics, {bf 9}, 769 (2013)), we analyze the stability of a Bose-Einstein condensate (BEC) in a one-dimensional lattice subjected to periodic shaking. In such a system the
We study the ground-state behavior of a Bose-Einstein Condensate (BEC) in a Raman-laser-assisted one-dimensional (1D) optical lattice potential forming a multilayer system. We find that, such system can be described by an effective model with spin-or
We perform quantum tomography on one-dimensional polariton condensates, spontaneously occurring in linear disorder valleys in a CdTe planar microcavity sample. By the use of optical interferometric techniques, we determine the first-order coherence f
Experimental realizations of topological quantum systems and detections of topological invariants in ultracold atomic systems have been a greatly attractive topic. In this work, we propose a scheme to realize topologically different phases in a bichr