ﻻ يوجد ملخص باللغة العربية
We study the ground-state behavior of a Bose-Einstein Condensate (BEC) in a Raman-laser-assisted one-dimensional (1D) optical lattice potential forming a multilayer system. We find that, such system can be described by an effective model with spin-orbit coupling (SOC) of pseudospin $(N-1)/2$, where $N$ is the number of layers. Due to the intricate interplay between atomic interactions, SOC and laser-assisted tunnelings, the ground-state phase diagrams generally consist of three phases -- a stripe, a plane wave and a normal phase with zero-momentum, touching at a quantum tricritical point. More important, even though the single-particle states only minimize at zero-momentum for odd $N$, the many-body ground states may still develop finite momenta. The underlying mechanisms are elucidated. Our results provide an alternative way to realize an effective spin-orbit coupling of Bose gas with the Raman-laser-assisted optical lattice, and would also be beneficial to the studies on SOC effects in spinor Bose systems with large spin.
Motivated by recent experimental observations (C.V. Parker {it et al.}, Nature Physics, {bf 9}, 769 (2013)), we analyze the stability of a Bose-Einstein condensate (BEC) in a one-dimensional lattice subjected to periodic shaking. In such a system the
Motivated by recent experiments, we analyse the stability of a three-dimensional Bose-Einstein condensate (BEC) loaded in a periodically driven one-dimensional optical lattice. Such periodically driven systems do not have a thermodynamic ground state
The realization of artificial gauge fields and spin-orbit coupling for ultra-cold quantum gases promises new insight into paradigm solid state systems. Here we experimentally probe the dispersion relation of a spin-orbit coupled Bose-Einstein condens
We investigate experimentally a Bose Einstein condensate placed in a 1D optical lattice whose phase or amplitude is modulated in a frequency range resonant with the first bands of the band structure. We study the combined effect of the strength of in
We report on the efficient design of quantum optimal control protocols to manipulate the motional states of an atomic Bose-Einstein condensate (BEC) in a one-dimensional optical lattice. Our protocols operate on the momentum comb associated with the