ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum simulation of rainbow gravity by nonlocal nonlinearity

87   0   0.0 ( 0 )
 نشر من قبل Maria Chiara Braidotti
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rainbow gravity modifies general relativity by introducing an energy dependent metric, which is expected to have a role in the quantum theory of black holes and in quantum gravity at Planck energy scale. We show that rainbow gravity can be simulated in the laboratory by nonlinear waves in nonlocal media, as those occurring in Bose-condensed gases and nonlinear optics. We reveal that at a classical level, a nonlocal nonlinear Schrodinger equation may emulate the curved space time in proximity of a rotating black hole as dictated by the rainbow gravity scenario. We also demonstrate that a fully quantized analysis is possible. By the positive $mathcal{P}$-representation, we study superradiance and show that the instability of a black-hole and the existence of an event horizon are inhibited by an energy dependent metric. Our results open the way to a number of fascinating experimental tests of quantum gravity theories and quantum field theory in curved manifolds, and also demonstrate that these theories may be novel tools for open problems in nonlinear quantum physics.



قيم البحث

اقرأ أيضاً

We reconsider here the model where large quantum gravity effects were first found, but now in its Null Surface Formulation (NSF). We find that although the set of coherent states for $Z$, the basic variable of NSF, is as restricted as it is the one f or the metric, while some type of small deviations from these states may cause huge fluctuations on the metric, the corresponding fluctuations on $Z$ remain small.
Occurrence of spacetime singularities is one of the peculiar features of Einstein gravity, signalling limitation on probing short distances in spacetime. This alludes to the existence of a fundamental length scale in nature. On contrary, Heisenberg q uantum uncertainty relation seems to allow for probing arbitrarily small length scales. To reconcile these two conflicting ideas in line with a well known framework of quantum gravity, several modifications of Heisenberg algebra have been proposed. However, it has been extensively argued that such a minimum length would introduce nonlocality in theories of quantum gravity. In this Letter, we analyze a previously proposed deformation of the Heisenberg algebra (i.e. $p rightarrow p (1 + lambda p^{-1})$) for a particle confined in a box subjected to a gravitational field. For the problem in hand, such deformation seems to yield an energy-dependent behavior of spacetime in a way consistent with gravitys rainbow, hence demonstrating a connection between non-locality and gravitys rainbow.
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type of theory is known as Rainbow Gravity. We coupled the nonlinear electrodynamics to the Rainbow Gravity, defining a new mass function $M(r,epsilon)$, such that we may formulate new classes of spherically symmetric regular black hole solutions, where the curvature invariants are well-behaved in all spacetime. The main differences between the General Relativity and our results in the the Rainbow gravity are: a) The intensity of the electric field is inversely proportional to the energy scale. The higher the energy scale, the lower the electric field intensity; b) the region where the strong energy condition (SEC) is violated decrease as the energy scale increase. The higher the energy scale, closer to the radial coordinate origin SEC is violated.
In this paper, we study the effects of rainbow gravity on relativistic Bose-Einstein condensation and thermodynamics parameters. We initially discussed some formal aspects of the model to only then compute the corrections to the Bose-Einstein condens ation. The calculations were carried out by computing the generating functional, from which we extract the thermodynamics parameters. The corrected critical temperature $T_c$ that sets the Bose-Einstein Condensation was also computed for the three mostly adopted cases for the rainbow functions. We have also obtained a phenomenological upper bound for a combination of the quantities involved in the model, besides showing the possibility of occurrence of the Bose-Einstein condensation in two spatial dimensions under appropriate conditions on those functions. Finally, we have discussed how harder is for the particles at an arbitrary temperature $T<T_c$ to enter the condensed state when compared with the usual scenario.
In the present work we investigate the Newtonian limit of higher-derivative gravity theories with more than four derivatives in the action, including the non-analytic logarithmic terms resulting from one-loop quantum corrections. The first part of th e paper deals with the occurrence of curvature singularities of the metric in the classical models. It is shown that in the case of local theories, even though the curvature scalars of the metric are regular, invariants involving derivatives of curvatures can still diverge. Indeed, we prove that if the action contains $2n+6$ derivatives of the metric in both the scalar and the spin-2 sectors, then all the curvature-derivative invariants with at most $2n$ covariant derivatives of the curvatures are regular, while there exist scalars with $2n+2$ derivatives that are singular. The regularity of all these invariants can be achieved in some classes of nonlocal gravity theories. In the second part of the paper, we show that the leading logarithmic quantum corrections do not change the regularity of the Newtonian limit. Finally, we also consider the infrared limit of these solutions and verify the universality of the leading quantum correction to the potential in all the theories investigated in the paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا