ﻻ يوجد ملخص باللغة العربية
Rainbow gravity modifies general relativity by introducing an energy dependent metric, which is expected to have a role in the quantum theory of black holes and in quantum gravity at Planck energy scale. We show that rainbow gravity can be simulated in the laboratory by nonlinear waves in nonlocal media, as those occurring in Bose-condensed gases and nonlinear optics. We reveal that at a classical level, a nonlocal nonlinear Schrodinger equation may emulate the curved space time in proximity of a rotating black hole as dictated by the rainbow gravity scenario. We also demonstrate that a fully quantized analysis is possible. By the positive $mathcal{P}$-representation, we study superradiance and show that the instability of a black-hole and the existence of an event horizon are inhibited by an energy dependent metric. Our results open the way to a number of fascinating experimental tests of quantum gravity theories and quantum field theory in curved manifolds, and also demonstrate that these theories may be novel tools for open problems in nonlinear quantum physics.
We reconsider here the model where large quantum gravity effects were first found, but now in its Null Surface Formulation (NSF). We find that although the set of coherent states for $Z$, the basic variable of NSF, is as restricted as it is the one f
Occurrence of spacetime singularities is one of the peculiar features of Einstein gravity, signalling limitation on probing short distances in spacetime. This alludes to the existence of a fundamental length scale in nature. On contrary, Heisenberg q
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type
In this paper, we study the effects of rainbow gravity on relativistic Bose-Einstein condensation and thermodynamics parameters. We initially discussed some formal aspects of the model to only then compute the corrections to the Bose-Einstein condens
In the present work we investigate the Newtonian limit of higher-derivative gravity theories with more than four derivatives in the action, including the non-analytic logarithmic terms resulting from one-loop quantum corrections. The first part of th