ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of stilbene-d12 for neutron spectroscopy without time of flight

70   0   0.0 ( 0 )
 نشر من قبل Jianxin Zhou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have experimentally characterized the light-output response of a deuterated trans-stilbene (stilbene-d12) crystal to quasi-monoenergetic neutrons in the 0.8 to 4.4 MeV energy range. These data allowed us to perform neutron spectroscopy measurements of a DT 14.1 MeV source and a PuBe-239 source by unfolding the impinging neutron spectrum from the measured light-output response. The stilbene-d12 outperforms a H1-stilbene of similar size when comparing the shape of the unfolded spectra and the reference ones. These results confirm the viability of non-hygroscopic stilbene-d12 crystal for direct neutron spectroscopy without need for time-of-flight measurements. This capability makes stilbene-d12 a well suited detector for fast-neutron spectroscopy in many applications including nuclear reaction studies, radiation protection, nuclear non-proliferation, and space travel.

قيم البحث

اقرأ أيضاً

The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopp er Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of $^3$He detectors on an operational instrument. The demonstrator has an active area of 0.2 m$^2$. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the $^3$He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by $^3$He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.
87 - K. P. Harrig 2020
A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous puls es. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.
101 - I. Deppner , N. Herrmann 2018
The Compressed Baryonic Matter spectrometer (CBM) is a future fixed-target heavy-ion experiment located at the Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The key element in CBM providing hadron identification at incident beam energies between 2 and 11 AGeV (for Au-nuclei) will be a 120 m$^2$ large Time-of-Flight (ToF) wall composed of Multi-gap Resistive Plate Chambers (MRPC) with a system time resolution better than 80 ps. Aiming for an interaction rate of 10 MHz for Au+Au collisions the MRPCs have to cope with an incident particle flux between 0.1~kHz/cm$^2$ and 100~kHz/cm$^2$ depending on their location. Characterized by granularity and rate capability the actual conceptual design of the ToF-wall foresees 6 different counter granularities and 4 different counter designs. In order to elaborate the final MRPC design of these counters several heavy-ion in-beam and cosmic tests were performed. In this contribution we present the conceptual design of the TOF wall and in particular discuss performance results of full-size MRPC prototypes.
A laser calibration system was developed for monitoring and calibrating time of flight (TOF) scintillating detector arrays. The system includes setups for both small- and large-scale scintillator arrays. Following test-bench characterization, the las er system was recently commissioned in experimental Hall B at the Thomas Jefferson National Accelerator Facility for use on the new Backward Angle Neutron Detector (BAND) scintillator array. The system successfully provided time walk corrections, absolute time calibration, and TOF drift correction for the scintillators in BAND. This showcases the general applicability of the system for use on high-precision TOF detectors.
A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEterminiation in fission Research (SPIDER) is a $2E-2v$ spectrometer designed to measure the mass of light fission fragm ents to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with $alpha$-particles from $^{229}$Th and its decay chain and $alpha$-particles and spontaneous fission fragments from $^{252}$Cf. Each detector module is comprised of a thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times on the order of 70 ns were measured with 200 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to precision of 0.5%. An ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا