ترغب بنشر مسار تعليمي؟ اضغط هنا

The CBM Time-of-Flight system

102   0   0.0 ( 0 )
 نشر من قبل Ingo Martin Deppner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Compressed Baryonic Matter spectrometer (CBM) is a future fixed-target heavy-ion experiment located at the Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The key element in CBM providing hadron identification at incident beam energies between 2 and 11 AGeV (for Au-nuclei) will be a 120 m$^2$ large Time-of-Flight (ToF) wall composed of Multi-gap Resistive Plate Chambers (MRPC) with a system time resolution better than 80 ps. Aiming for an interaction rate of 10 MHz for Au+Au collisions the MRPCs have to cope with an incident particle flux between 0.1~kHz/cm$^2$ and 100~kHz/cm$^2$ depending on their location. Characterized by granularity and rate capability the actual conceptual design of the ToF-wall foresees 6 different counter granularities and 4 different counter designs. In order to elaborate the final MRPC design of these counters several heavy-ion in-beam and cosmic tests were performed. In this contribution we present the conceptual design of the TOF wall and in particular discuss performance results of full-size MRPC prototypes.

قيم البحث

اقرأ أيضاً

A laser calibration system was developed for monitoring and calibrating time of flight (TOF) scintillating detector arrays. The system includes setups for both small- and large-scale scintillator arrays. Following test-bench characterization, the las er system was recently commissioned in experimental Hall B at the Thomas Jefferson National Accelerator Facility for use on the new Backward Angle Neutron Detector (BAND) scintillator array. The system successfully provided time walk corrections, absolute time calibration, and TOF drift correction for the scintillators in BAND. This showcases the general applicability of the system for use on high-precision TOF detectors.
77 - S. Dong , G.M. Huang , J. Fruhauf 2020
A high-performance time-of-flight (TOF) MRPC wall is being built for the CBM experiment at FAIR for charged hadron identification. The detector control system for the TOF system will be based on EPICS. All components like power supplies for low and h igh voltages, power distribution boxes, gas control and front-end electronics (FEE) are controlled and monitored. In a test, called mini-CBM, all these functionalities are implemented and tested. For monitoring the detector environment and the status of the front-end electronics, a slow control application is implemented based on IPbus, which is an FPGA-based slow control bus used for the TOF data acquisition system. In addition to the functions of control and monitoring, exception handling and data archiving services are implemented as well. This system has been fully verified in beam tests in 2019 at GSI.
A Time of Flight monitoring system has been developed for BES3. The light source is a 442-443 nm laser diode, which is stable and provides a pulse width as narrow as 50 ps and a peak power as large as 2.6 W. Two optical-fiber bundles with a total o f 512 optical fibers, including spares, are used to distribute the light pulses to the Time of Flight counters. The design, operation, and performance of the system are described.
Multi-gap Resistive Plate Chambers (MRPCs) with multi-strip readout are considered to be the optimal detector candidate for the Time-of-Flight (ToF) wall in the Compressed Baryonic Matter (CBM) experiment. In the R&D phase MRPCs with different granul arities, low-resistive materials and high voltage stack configurations were developed and tested. Here, we focus on two prototypes called HD-P2 and THU-strip, both with strips of 27 cm$^2$ length and low-resistive glass electrodes. The HD-P2 prototype has a single-stack configuration with 8 gaps while the THU-strip prototype is constructed in a double-stack configuration with 2 $times$ 4 gaps. The performance results of these counters in terms of efficiency and time resolution carried out in a test beam time with heavy-ion beam at GSI in 2014 are presented in this proceeding.
We have experimentally characterized the light-output response of a deuterated trans-stilbene (stilbene-d12) crystal to quasi-monoenergetic neutrons in the 0.8 to 4.4 MeV energy range. These data allowed us to perform neutron spectroscopy measurement s of a DT 14.1 MeV source and a PuBe-239 source by unfolding the impinging neutron spectrum from the measured light-output response. The stilbene-d12 outperforms a H1-stilbene of similar size when comparing the shape of the unfolded spectra and the reference ones. These results confirm the viability of non-hygroscopic stilbene-d12 crystal for direct neutron spectroscopy without need for time-of-flight measurements. This capability makes stilbene-d12 a well suited detector for fast-neutron spectroscopy in many applications including nuclear reaction studies, radiation protection, nuclear non-proliferation, and space travel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا