ترغب بنشر مسار تعليمي؟ اضغط هنا

Voice2Series: Reprogramming Acoustic Models for Time Series Classification

383   0   0.0 ( 0 )
 نشر من قبل C.-H. Huck Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning to classify time series with limited data is a practical yet challenging problem. Current methods are primarily based on hand-designed feature extraction rules or domain-specific data augmentation. Motivated by the advances in deep speech processing models and the fact that voice data are univariate temporal signals, in this paper, we propose Voice2Series (V2S), a novel end-to-end approach that reprograms acoustic models for time series classification, through input transformation learning and output label mapping. Leveraging the representation learning power of a large-scale pre-trained speech processing model, on 30 different time series tasks we show that V2S either outperforms or is tied with state-of-the-art methods on 20 tasks, and improves their average accuracy by 1.84%. We further provide a theoretical justification of V2S by proving its population risk is upper bounded by the source risk and a Wasserstein distance accounting for feature alignment via reprogramming. Our results offer new and effective means to time series classification.

قيم البحث

اقرأ أيضاً

A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scienti fic time-series analysis literature, and include summaries of time series in terms of their correlation structure, distribution, entropy, stationarity, scaling properties, and fits to a range of time-series models. After computing thousands of features for each time series in a training set, those that are most informative of the class structure are selected using greedy forward feature selection with a linear classifier. The resulting feature-based classifiers automatically learn the differences between classes using a reduced number of time-series properties, and circumvent the need to calculate distances between time series. Representing time series in this way results in orders of magnitude of dimensionality reduction, allowing the method to perform well on very large datasets containing long time series or time series of different lengths. For many of the datasets studied, classification performance exceeded that of conventional instance-based classifiers, including one nearest neighbor classifiers using Euclidean distances and dynamic time warping and, most importantly, the features selected provide an understanding of the properties of the dataset, insight that can guide further scientific investigation.
Multivariate time series naturally exist in many fields, like energy, bioinformatics, signal processing, and finance. Most of these applications need to be able to compare these structured data. In this context, dynamic time warping (DTW) is probably the most common comparison measure. However, not much research effort has been put into improving it by learning. In this paper, we propose a novel method for learning similarities based on DTW, in order to improve time series classification. Making use of the uniform stability framework, we provide the first theoretical guarantees in the form of a generalization bound for linear classification. The experimental study shows that the proposed approach is efficient, while yielding sparse classifiers.
Over the past decade, multivariate time series classification (MTSC) has received great attention with the advance of sensing techniques. Current deep learning methods for MTSC are based on convolutional and recurrent neural network, with the assumpt ion that time series variables have the same effect to each other. Thus they cannot model the pairwise dependencies among variables explicitly. Whats more, current spatial-temporal modeling methods based on GNNs are inherently flat and lack the capability of aggregating node information in a hierarchical manner. To address this limitation and attain expressive global representation of MTS, we propose a graph pooling based framework MTPool and view MTSC task as graph classification task. With graph structure learning and temporal convolution, MTS slices are converted to graphs and spatial-temporal features are extracted. Then, we propose a novel graph pooling method, which uses an ``encoder-decoder mechanism to generate adaptive centroids for cluster assignments. GNNs and graph pooling layers are used for joint graph representation learning and graph coarsening. With multiple graph pooling layers, the input graphs are hierachically coarsened to one node. Finally, differentiable classifier takes this coarsened one-node graph as input to get the final predicted class. Experiments on 10 benchmark datasets demonstrate MTPool outperforms state-of-the-art methods in MTSC tasks.
High levels of sparsity and strong class imbalance are ubiquitous challenges that are often presented simultaneously in real-world time series data. While most methods tackle each problem separately, our proposed approach handles both in conjunction, while imposing fewer assumptions on the data. In this work, we propose leveraging a self-supervised learning method, specifically Autoregressive Predictive Coding (APC), to learn relevant hidden representations of time series data in the context of both missing data and class imbalance. We apply APC using either a GRU or GRU-D encoder on two real-world datasets, and show that applying one-step-ahead prediction with APC improves the classification results in all settings. In fact, by applying GRU-D - APC, we achieve state-of-the-art AUPRC results on the Physionet benchmark.
Recent advancements in transfer learning have made it a promising approach for domain adaptation via transfer of learned representations. This is especially when relevant when alternate tasks have limited samples of well-defined and labeled data, whi ch is common in the molecule data domain. This makes transfer learning an ideal approach to solve molecular learning tasks. While Adversarial reprogramming has proven to be a successful method to repurpose neural networks for alternate tasks, most works consider source and alternate tasks within the same domain. In this work, we propose a new algorithm, Representation Reprogramming via Dictionary Learning (R2DL), for adversarially reprogramming pretrained language models for molecular learning tasks, motivated by leveraging learned representations in massive state of the art language models. The adversarial program learns a linear transformation between a dense source model input space (language data) and a sparse target model input space (e.g., chemical and biological molecule data) using a k-SVD solver to approximate a sparse representation of the encoded data, via dictionary learning. R2DL achieves the baseline established by state of the art toxicity prediction models trained on domain-specific data and outperforms the baseline in a limited training-data setting, thereby establishing avenues for domain-agnostic transfer learning for tasks with molecule data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا