ترغب بنشر مسار تعليمي؟ اضغط هنا

Expanding measure has nonuniform specification property on random dynamical system

84   0   0.0 ( 0 )
 نشر من قبل Rafael Jos\\'e A. Bilbao
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Rafael A. Bilbao




اسأل ChatGPT حول البحث

In the present paper, we study the distribution of the return points in the fibers for a RDS (random dynamical systems) nonuniformly expanding preserving an ergodic probability, we also show the abundance of nonlacunarity of hyperbolic times that are obtained along the orbits through the fibers. We conclude that any ergodic measure with positive Lyapunov exponents satisfies the nonuniform specification property between fibers. As consequences, we prove that any expanding measure is the limit of probability measure whose measures of disintegration on the fibers are supported by a finite number of return points and we prove that the average of the measures on the fibers corresponding to a disintegration, along an orbit in the base dynamics is the limit of Dirac measures supported in return orbits on the fibers.



قيم البحث

اقرأ أيضاً

A classical result in thermodynamic formalism is that for uniformly hyperbolic systems, every Holder continuous potential has a unique equilibrium state. One proof of this fact is due to Rufus Bowen and uses the fact that such systems satisfy expansi vity and specification properties. In these notes, we survey recent progress that uses generalizations of these properties to extend Bowens arguments beyond uniform hyperbolicity, including applications to partially hyperbolic systems and geodesic flows beyond negative curvature. We include a new criterion for uniqueness of equilibrium states for partially hyperbolic systems with 1-dimensional center.
Let $Lambda$ be a complex manifold and let $(f_lambda)_{lambdain Lambda}$ be a holomorphic family of rational maps of degree $dgeq 2$ of $mathbb{P}^1$. We define a natural notion of entropy of bifurcation, mimicking the classical definition of entrop y, by the parametric growth rate of critical orbits. We also define a notion a measure-theoretic bifurcation entropy for which we prove a variational principle: the measure of bifurcation is a measure of maximal entropy. We rely crucially on a generalization of Yomdins bound of the volume of the image of a dynamical ball. Applying our technics to complex dynamics in several variables, we notably define and compute the entropy of the trace measure of the Green currents of a holomorphic endomorphism of $mathbb{P}^k$.
167 - Lin Wang , Yujun Zhu 2015
Let $f$ be a partially hyperbolic diffeomorphism on a closed (i.e., compact and boundaryless) Riemannian manifold $M$ with a uniformly compact center foliation $mathcal{W}^{c}$. The relationship among topological entropy $h(f)$, entropy of the restri ction of $f$ on the center foliation $h(f, mathcal{W}^{c})$ and the growth rate of periodic center leaves $p^{c}(f)$ is investigated. It is first shown that if a compact locally maximal invariant center set $Lambda$ is center topologically mixing then $f|_{Lambda}$ has the center specification property, i.e., any specification with a large spacing can be center shadowed by a periodic center leaf with a fine precision. Applying the center spectral decomposition and the center specification property, we show that $ h(f)leq h(f,mathcal{W}^{c})+p^{c}(f)$. Moreover, if the center foliation $mathcal{W}^{c}$ is of dimension one, we obtain an equality $h(f)= p^{c}(f)$.
281 - John W. Robertson 2017
The goal of this paper is to construct invariant dynamical objects for a (not necessarily invertible) smooth self map of a compact manifold. We prove a result that takes advantage of differences in rates of expansion in the terms of a sheaf cohomolog ical long exact sequence to create unique lifts of finite dimensional invariant subspaces of one term of the sequence to invariant subspaces of the preceding term. This allows us to take invariant cohomological classes and under the right circumstances construct unique currents of a given type, including unique measures of a given type, that represent those classes and are invariant under pullback. A dynamically interesting self map may have a plethora of invariant measures, so the uniquess of the constructed currents is important. It means that if local growth is not too big compared to the growth rate of the cohomological class then the expanding cohomological class gives sufficient marching orders to the system to prohibit the formation of any other such invariant current of the same type (say from some local dynamical subsystem). Because we use subsheaves of the sheaf of currents we give conditions under which a subsheaf will have the same cohomology as the sheaf containing it. Using a smoothing argument this allows us to show that the sheaf cohomology of the currents under consideration can be canonically identified with the deRham cohomology groups. Our main theorem can be applied in both the smooth and holomorphic setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا